
Advanced Computing: An International Journal (ACIJ), Vol.2, No.1, January 2011

DOI : 10.5121/acij.2011.2102 18

QOS BASED USER DRIVEN SCHEDULER FOR GRID

ENVIRONMENT

Sanjay Patel
1
 and Madhuri Bhavsar

2

1
Department of Computer Engineering, SVBIT, Gandhinagar

sanjaypatel54@gmail.com
2
Department of Computer Science & Engineering, Institute Of Technology,

Nirma University, Ahmedabad
madhuri.bhavsar@nirmauni.ac.in

ABSTRACT

As grids are in essence heterogeneous, dynamic, shared and distributed environments, managing these

kinds of platforms efficiently is extremely complex. A promising scalable approach to deal with these

intricacies is the design of self-managing of autonomic applications. Autonomic applications adapt their

execution accordingly by considering knowledge about their own behaviour and environmental

conditions.QoS based User Driven scheduling for grid that provides the self-optimizing ability in

autonomic applications. Computational grids to provide a user to solve large scale problem by spreading

a single large computation across multiple machines of physical location.

QoS based User Driven scheduler for grid also provides reliability of the grid systems and increase the

performance of the grid to reducing the execution time of job by applying scheduling policies defined by

the user. The main aim of this paper is to distribute the computational load among the available grid

nodes and to developed a QoS based scheduling algorithm for grid and making grid more reliable.Grid

computing system is different from conventional distributed computing systems by its focus on large scale

resource sharing, where processors and communication have significant inuence on Grid computing

reliability. Reliability capabilities initiated by end users from within applications they submit to the grid

for execution. Reliability of infrastructure and management services that perform essential functions

necessary for grid systems to operate, such as resource allocation and scheduling.

KEYWORDS

Quality of Service (QoS); Scheduling; User Driven, Faiure To Repair Rate; Scheduling Instance

1. INTRODUCTION

In most organizations, there are large amounts of underutilized computing resources.Most

desktop machines are busy less than 5 percent of the time. In some organizations, even the

server machines can often be relatively idle. A grid is built from multipurpose protocols and

interfaces that address such issues like authentication, authorization and resource discovery. A

grid allows its constituent resources to be used in a coordinated fashion to provide various

qualities of service like response time, throughput etc. The User Driven Scheduler is intended to

work as an resource managing module, queuing and scheduling of the Grid. The scheduler will

offer managing batch jobs on Grid by scheduling CPU time according to user utility rather than

system performance considerations. Autonomic applications adapt their execution accordingly

by considering knowledge about their own behaviour and environmental conditions.QoS based

User Driven scheduling for grid that provides the self-optimizing ability in autonomic

applications. The main objective of this project is to provide the self-optimizing and QoS driven

scheduling ability in autonomic applications desired by the user [1].

Grid computing is an interesting research area that integrates geographically-distributed

computing resources into a single powerful system. Many applications can benefit from such

Advanced Computing: An International Journal (ACIJ), Vol.2, No.1, January 2011

19

integration. Examples are collaborative applications, remote visualization and the remote use of

scientific instruments. Grid software supports such applications by addressing issues like

resource allocation, fault tolerance, security, and heterogeneity. Parallel computing on

geographically distributed resources, often called distributed supercomputing, is one important

class of grid computing applications. Projects such as SETI@home, Intel’s Philanthropic Peer-

to-Peer Program for curing cancer and companies such as Entropia show that distributed

supercomputing is both useful and feasible.

2. GRID SCHEDULING

In this work exploit the capabilities of Cellular Memetic Algorithms (cMAs) for obtaining

efficient batch schedulers for Grid Systems. A careful design of the cMA methods and operators

for the problem yielded to an efficient and robust implementation. Our experimental study,

based on a known static benchmark for the problem, shows that this heuristic approach is able to

deliver very high quality planning of jobs to Grid nodes and thus it can be used to design

efficient dynamic schedulers for real Grid systems. Such dynamic schedulers can be obtained by

running the cMAbased scheduler in batch mode for a very short time to schedule jobs arriving

to the system since the last activation of the cMA scheduler [2].

3. EXIASTING ALGORITHMS AND METHODS (RELATED WORK)

3.1. Cellular Memetic Algorithm

In Memetic Algorithms (MAs) the population of individuals could be unstructured or structured.

As in the case of other evolutionary algorithms, cMAs are high level algorithms whose

description is independent of the problem being solved. In this work exploit the capabilities of

Cellular Memetic Algorithms (cMAs) for obtaining efficient batch schedulers for Grid Systems.

A careful design of the cMA methods and operators for the problem yielded to an efficient and

robust implementation. Our experimental study, based on a known static benchmark for the

problem,shows that this heuristic approach is able to deliver very high quality planning of jobs

to Grid nodes and thus it can be used to design efficient dynamic schedulers for real Grid

systems. Such dynamic schedulers can be obtained by running the cMAbased scheduler in batch

mode for a very short time to schedule jobs arriving to the system since the last activation of the

cMA scheduler[10].

3.2. Graph Theory

Services scheduling mainly acts according to some high-level application QoS parameters to

carry on, for instance, the complete time, the reliability or the service cost and so on To

develops a QoS aware Grid Services Scheduling optimal algorithm based on the complete time

weight matrix. Grid Services Scheduling is a challenging problem under Open Grid Service

Architecture (OGSA). A graph theory formal description is introduced into the Service Grid

Model in this paper. The necessary and su_cient condition of complete matching of user job and

service resources has been given and proved. Optimal Solution to matchmaking of grid jobs and

grid services is developed based on the running time weight matrix, and the arithmetic has been

verified by simulation analysis which proved to be more efficient than the alike arithmetic. The

arithmetic has been implemented and running well[3].

3.3. Scheduling Instance

A scheduling instance is defined as a software entity that exhibits a standardized behaviour with

respect to the interactions with other software entities The scheduling instance is the basic

Advanced Computing: An International Journal (ACIJ), Vol.2, No.1, January 2011

20

building block of a scalable, modular architecture for scheduling tasks, jobs, worflows, or

applications in Grids[4].

3.4. Easy Grid AMS (Application Management System)

This section briey describes the EasyGrid AMS that is used in this work to manage the

execution of a parallel MPI application on the computational grid. The EasyGrid AMS

implements dynamic process creation and is automatically embedded into the MPI parallel

application. It is not dependent on other grid system middleware, requiring only the Globus

Toolkit and the LAM/MPI library to be installed[5].

4. EXIASTING METHODOLOGIES
A grid is created by installing Executors on each machine that is to be part of the grid and

linking them to a central Manager component. The Windows installer setup that comes with the

Alchemi distribution and minimal configuration makes it very easy to set up a grid.

4.1. Layered Architecture of Grid

Users can develop, execute and monitor grid applications using the .NET API and tools which

are part of the Alchemi SDK. Alchemi offers a powerful grid thread programming model which

makes it very easy to develop grid applications and a grid job model for grid-enabling legacy or

non-.NET applications [1].

Figure 1: Layered Architecture of Grid

Alchemi layered architecture for a desktop grid computing environment is shown in Figure.

Alchemi follows the master-worker parallel computing paradigm in which a central component

dispatches independent units of parallel execution to workers and manages them. In Alchemi,

this unit of parallel execution is termed grid thread and contains the instructions to be executed

on a grid node, while the central component is termed Manager [1].

4.2 Existing Scheduling Mechanism

In existing scheduling mechanism all threads and computation done by system at kernel level.

First of all application get divided in to different grid enabled process part and each small part

called thread. When application divide in to different thread then system assign to each thread

Advanced Computing: An International Journal (ACIJ), Vol.2, No.1, January 2011

21

different thread id. Each thread id(thread) divide for computation to available grid nodes. After

computation each grid nodes return back thread or computation results to the head node [1].

Figure 2: Existing Scheduling Mechanism

5. THE PROPOSED ALGORITHM AND METHODS

5.1 Process Sequence

There are four main entities in architecture, which are users, manager, schedulers and executor.

A client is a user who submits a job to the system. A job refers to a collection of computation

that the client wants to execute. The job is submitted by the client to the manager through a

graphical user interface (GUI).

Figure 3: Job Processing Sequence

5.2 Design

A typical Grid consists of a number of services and a number of physical resources,including

compute resources that are capable of hosting these services as well as storage resources,

network resources etc. Grid applications are typically defined in terms of workows, consisting

of one or more tasks that may communicate and cooperate to achieve their objective.

Advanced Computing: An International Journal (ACIJ), Vol.2, No.1, January 2011

22

Figure 4: New Scheduling Mechanism

5.3 Algorithm Description

Failure of a resource while doing scheduling is not being considered at the time of allocating

resources by the broker. Here, at the time of scheduling jobs, broker will consider only

minimum cost of a resource along with MIPS of that resource. While doing scheduling, if

resource fails to execute any job then such thing cannot be ignored when next time a job needs

to be executed on that resource So for a resource a new parameter is added as failure rate which

will consider success rate of a resource. If a resource is having 100% failure rate then that

means that whenever a job is scheduled on that resource then it will surely fail to execute that

job on that resource.

5.4 Flowchart

Figure 5: Flow Chart

Advanced Computing: An International Journal (ACIJ), Vol.2, No.1, January 2011

23

In following figure given steps to identify best resource. First of all we identify all the resources

in the grid. Then find success rate of each grid node.Compare success rate of each grid node and

which grid node success rate is high then we select this resource for computation and also

arrange grid node by success rate. but two grid node success rate is same then we also find

execution time of each grid node. After find execution time of each grid node we compare

execution time of grid node. We find minimum execution time of node that grid node we assign

for computation. We rotate this steps.

6. USERS QOS REQUIREMENTS

• Time:

Minimize execution time to increase the performance.

• Reliability:

No. of failures for execution of workflows.

• Fidebility:

Measurement related to the quality of the output of execution.

7. IMPLEMENT RELIABILITY IN GRID

Scientific applications have diverse performance and reliability requirements that are often

difficult to satisfy, given the variability of underlying resources. Availability can vary due to

failure of one or more critical services, load on one or more resource components, recovery

from a failure, etc. Moreover, as Grid and web services continue to evolve, rapidly changing

software stacks with concomitant configuration and service reliability challenges exacerbate

application execution times and failures [13].

• Reliability Programming Models

1. Master Worker: In the master-worker paradigm the master decomposes the

problem into small tasks and distributes these tasks for execution.

2. Divide and Conquer : The divide and conquer strategy partitions the problem

into two or more smaller problems that can be solved independently and

combined[14].

3. SPMD : In the SPMD model, each task executes common code on different

data. Failure of one task adversely affects the entire application, requiring global

coordination.

8. RELIABILITY SPECIFICATION

In this section, we discuss the extensions required to the virtual grid description language to

support reliability specifications. We define a high-level qualitative reliability metric space that

can be used to request resources. The qualitative levels are mapped to well-defined quantitative

reliability levels in the virtual grid to enable runtime monitoring and adaptation.

Define a 5-point qualitative reliability scale that maps to quantitative levels of availability

as follows: [11]

Advanced Computing: An International Journal (ACIJ), Vol.2, No.1, January 2011

24

1) High Reliability (90-100%)

2) Good Reliability (80-89%)

3) Medium Reliability (70-79%)

4) Low Reliability (60-69%)

5) Poor Reliability (59-0%)

9. PERFORMABILITY ANALYSIS

Grid systems are often able to survive the failure of one or more components and continue to

provide service, but with reduced performance. Such behavior and status of systems with

multiple interacting components is typically captured using stochastic process modeling [12].

The probability of staying in a certain state with respect to transition rates between states is used

to quantify system performance and reliability. Markov Reward Models (MRM) are typically

used to model gracefully degradable systems and capture joint performance and system

reliability. A Markov reward model consists of a Markov chain that describes a systems

possible states and an associated reward function.

10. RELIABILITY RESULTS

10.1 Without Reliability Model

Figure 6: Without Reliability Model

10.2 With Reliability Model

Figure 7: With Reliability Model

Advanced Computing: An International Journal (ACIJ), Vol.2, No.1, January 2011

25

10.3 Failure To Repair Rate

Figure 8: Failure To Repair Rate

11. Results Analysis

Showing the results of reliability we can say that using reliability model and programming

method we can decrease the execution time of job and increase the performance of grid. Also

find the failure to repair rate of each node and decide which node is better for our computation.

We use values (from fig.8) for the failure-to-repair rate and performance degradation factors to

study the variation in expected steady state reward rates. If we considered only performance, we

would pick Grid node 2 as it completes the application most quickly. If we were to select a

resource based on reliability, we would pick Grid node 8, the one with the lowest failure-to-

repair ratio. Also we can say from fig.6 and 7 we run without reliability model program the

execution time is high as compare to with reliability program and we run with reliability model

program the execution time is low as compare to previous one. So we can say that reliability

model is very important for decrease the execution time of job.

11. CONCLUSIONS

The objective of this paper is to deploy the computational grid by applying user driven

scheduling policies with an improvement in QoS parameters. Major parameter considered in

this paper is Time and Reliability.In Major Project,From the results we can say that using Qos

based scheduler we can decrease the execution time and increase the performance of grid. QoS

based user driven scheduler also provide large scale job by distribute across multiple grid

nodes,and also reduce the execution time of a job and increase the performance of the grid. we

can find failure to repair rate of each grid node.using reliability model and programming method

we can decrease the execution time of job and increase the performance of grid. Also making

grid more reliable. Showing the results of reliability(fig.6 and fig.7) we can conclude that using

reliability model and programming method we can decrease the execution time of job and

increase the reliable performance of grid.The objective of this paper is to deploy the

computational grid by applying user driven scheduling policies with an improvement in QoS

parameters.Major parameter considered in this paper is Time and Reliability.Also we can find

failure to repair rate of each grid node.QoS based scheduling algorithm also provide large scale

job by distributing across multiple grid nodes,and also reduce the execution time of a job and

increase the performance of the grid.

Advanced Computing: An International Journal (ACIJ), Vol.2, No.1, January 2011

26

12.ACKNOWLEDGEMENTS

I am also very thankful to faculty members and to my friends for their support. And at this

moment, I would like to express my appreciation to my family members for their unlimited

encouragement and support.

REFERENCES

[1] Zeljko Stanfel, Goran Martinovic, Zeljko Hocenski,Scheduling Algorithms for Dedicated

Nodes in Alchemi Grid,2008 IEEE International Conference on Systems,Man and Cybernetics

(SMC 2008)

[2] Fatos Xhafa,E_cient Batch Job Scheduling in Grids using Cellular Memetic

Algorithms,2007 IEEE

[3] Weidong Hao1, Yang Yang1, Chuang Lin2, Zhengli,QoS-aware Scheduling Algorithm

Based on Complete Matching of User Jobs and Grid Services, Proceedings of the 2006 IEEE

Asia-Paci_c Conference on Services Computing (APSCC'06)0-7695-2751-5/06 2006

[4] N.Tonellotto,nicola.tonellotto@isti.cnr.it,R.Yahyapourramin.yahyapour@unido.de, Ph.

Wieder ph.wieder@fz-juelich.de,A Proposal for a Generic Grid Scheduling Architecture

[5] Aline P. Nascimento, Cristina Boeres, Vinod E.F. Rebello Instituto deComputao,

Universidade Federal Fluminense (UFF), Niteri, RJ, Brazil de

paula,boeres,vinod@ic.u_.br,Dynamic Self-Scheduling for Parallel Applications with Task

Dependencies,MGC08 December 1-5, 2008 Leuven, Belgium. Copyright 2008 ACM 978-1-

60558-365-5/08/12

[6] Ali Afzal, John Darlington, A. Stephen McGough London e-Science Centre,QoS-

Constrained Stochastic Workow Scheduling in Enterprise and Scienti_c Grids,1- 4244-0344-

8/06/2006 IEEE 46 REFERENCES 47

[7] B.T.Benjamin Khoo et al., A multi-dimensional scheduling scheme in a grid computing

environment, Journal of Parallel and Distributed Computing, vol. 67, no. 6, pp. 659-673, June

2007.

[8] S. Ghosh. Distributed Systems: An Algorithmic Approach, Computer and Information

Sciences, Chapman & Hall/CRC, 2006.

[9] A. Abraham, R. Buyya and B. Nath. Natures Heuristics for Scheduling Jobs on

Computational Grids, The 8th IEEE International Conference on Advanced Computing and

Communications (ADCOM 2000) India, 2000.

[10] E. Alba, B. Dorronsoro, and H. Alfonso. Cellular Memetic Algorithms, Journal of

Computer Science and Technology, 5(4), 257-263, 2006.

[11] Darshana Shah,Swapnali Mahadik. QoS Oriented Failure Rate-Cost and Time Algorithm

for Compute Grid,Department of Computer Engineering and IT

[12] Lavanya Ramakrishnan, Daniel A. Reed. Performability Modeling for Scheduling and

Fault Tolerance Strategies for Scienti_c Workows, HPDC08, June 2327, 2008, Boston,

Massachusetts, USA.

[13] Christopher Dabrowski,Reliability in Grid Computing Systems,National Institute of

Standards and Technology,1-4244-0344-8/06/2006 ACM.

[14] Y.S. Dai, M. Xie K.L. Poh,Reliability Analysis of Grid Computing Systems,Proceedings of

the 2002 Paci_c Rim International Symposium on Dependable Computing (PRDC02) 0-7695-

1852-4/02 2002 IEEE.

Authors

 I am sanjay patel. I completed my M.Tech.(Computer science & engineering) from Nirma

University in June – 2010. My Research area is Grid Computing. Currently I am working as a

Assistant Professor in SVBIT.

