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ABSTRACT 

Due to recent advances in data collection techniques, massive amounts of data are being collected at an 

extremely fast pace. Also, these data are potentially unbounded. Boundless streams of data collected from 

sensors, equipments, and other data sources are referred to as data streams. Various data mining tasks 

can be performed on data streams in search of interesting patterns. This paper studies a particular data 

mining task, clustering, which can be used as the first step in many knowledge discovery processes. By 

grouping data streams into homogeneous clusters, data miners can learn about data characteristics 

which can then be developed into classification models for new data or predictive models for unknown 

events. Recent research addresses the problem of data-stream mining to deal with applications that 

require processing huge amounts of data such as sensor data analysis and financial applications. For 

such analysis, single-pass algorithms that consume a small amount of memory are critical.  

 

KEYWORDS 

Time series, Data streams, clustering, single-pass Algorithms 

1. INTRODUCTION 

For many recent applications, the concept of a data stream is more appropriate than a data set. 

By na-ture, a stored data set is an appropriate model when significant portions of the data are 

queried again and again, and updates are small and/or relatively infrequent. In contrast, a data 

stream is an appropriate model when a large volume of data is arriving continuously and it is 

either unnecessary or impractical to store the data in some form of memory. Some applications 

naturally generate data streams as opposed to simple data sets. 

 

Motivation 

Time series data mining involves the discovery of interesting patterns from time series data that 

were previously unknown to information users. Through the use of time series data mining, 

researchers are able to perform various tasks on time series data, such as time series 

classification, time series clustering, rule extraction and pattern querying. To perform these 

tasks, different techniques have been established. 

With substantial growth in computer network during the past few decades, time series data are 

being collected continuously. Time series data of such nature are called data streams, which 

flow through computer systems at high speeds. Data streams have greater impact on computing 

systems than static time series data. Challenges introduced by time series data are faced on a 

greater scale, due to larger data volumes. New challenges are also presented by data streams. 

The data streams often are too large to fit in the main memory, thus greatly affecting data 
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streams processing systems on how streams are processed. There is a real need for effective data 

streams mining techniques that can handle the challenges of data streams efficiently. 
 

1.2. Time series data 

Time series data constitutes a large portion of the data stored in real world databases. Time 

series data appears in many application domains: financial, weather, medical, social science, 

computer networks, and business. This time series data is derived from recording the 

observations of various types of measurements, e.g., temperature, stock price, household income, 

patient’s heart rate, number of bits transferred, and product’s sale volume over a period of time. 

Some complex data types, such as audio and video, are also considered time series data, since 

they can be measured at each point in time.  
 

1.3. Data Streams Clustering 

Mining time series data and data streams have been recognized as two of the top ten 

research problems in data mining. Among all data mining techniques, clustering can be used as 

the first step in the data mining process. By grouping data streams into homogeneous clusters 

that are described based on similarities, data miners can learn about data characteristics which 

can then be developed into classification models for new data or predictive models for unknown 

events. 

Clustering algorithms in general have been categorized into five types: partitioning, hierarchical, 

density-based, grid-based, and model-based. Clustering algorithms that are frequently cited in 

the literature include K-means, CLARANS, BIRCH, DBSCAN, and STING. However, 

challenges arise when these clustering techniques are applied to time series data. Because time 

series data has its unique characteristics of having very high dimensionality (number of time 

points), executing clustering algorithms become costly in terms of computational time. Various 
approaches exist in clustering time series with high-dimensionality. Related work on clustering 

time series data relies on transforming raw time series data using dimensionality reduction 

techniques, and then performing clustering on the transformed data to resolve the dimensionality 

problem. However, in data streams clustering the need of online techniques that can cluster data 

points incrementally arises. 

 In computer science, data stream clustering is defined as the clustering of data that arrive 

continuously such as telephone records, multimedia data, financial transactions etc. Data stream 
clustering is usually studied under the data stream model of computation and the objective is, 

given a sequence of points, to construct a good clustering of the stream, using a small amount of 

memory and time. Data stream clustering has recently attracted attention for emerging 

applications that involve large amounts of streaming data.  
 

2. Definitions 

The existing approaches of data streams clustering in literature and various related issues. First, 
it examines the challenges of dealing with the static time series data type and how these 

challenges are overcome in the context of clustering. It also investigates the challenges of 

managing transient data streams for data mining, followed by the issues that arise when 

clustering data streams are considered. As a result, the requirements of an eligible data streams 

clustering technique are reviewed. 

 

2.1. Definitions of Time Series Data and a Time Series Dataset 

A time series is a sequence of event values which occur during a period of time. Each event 
occurring at each time point has a value which is recorded. The collection of all these values 

represents a single variable such as EEG signal, or stock price over a time period. Therefore, a 
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time series of a single variable contains a sequence of recorded observations of an interesting 

event. Formally a time series can be represented by: 

S = {s 1, s 2…………, s n}------------------------------------------(1) 

where S is a whole time series, s i is the recorded value of variable s at time i, and n is the 

number of observations. A time series dataset D consists of a collection of time series S j , when 

1 ≤ j ≤ m, and m is the number of time series.  

Time series data appears in many application domains, such as in financial, meteorological, 

medical, social sciences, computer networks, and business. Time series are derived from 

recording the observations of various types of phenomena, e.g., temperature, stock prices, 
household income, patient’s heart rate, number of bits transferred, and product’s sale volume 

over a period of time. Some complex data types, such as audio and video, are also considered 

time series data, since they can be measured at each point in time. 

 

2.2. Definition of Data Streams Clustering 

In a data streams clustering context, there are a fixed m number of data sources such as 

geographical sensors that are sending temperature data at given periodic intervals. We assume 

that n number of data observations from each data source will be transmitted from time T 1 to T 

n . In addition to a static time series dataset D, n can increase indefinitely in a data streams 

environment. A supporting data streams clustering system will continuously handle all data 

points flowing into the system from m data sources for n time intervals, one interval at a time. 

 

3. RELATED ALGORITHMS 

Partitioning methods subdivide a dataset into k groups. One such example is the k-

medoids algorithm which selects k initial centers, repeatedly chooses a data point randomly, and 

replaces it with an existing center if there is an improvement in SSQ. k-medoids is related to the 

CG algorithm that solves the facility location variant which is more desirable since in practice 

one does not know the exact number of clusters k. Choosing a new medoid among all the 
remaining points is time-consuming; to address this problem, CLARA used sampling to reduce 

the number of feasible centers. A distinguishing feature of our approach is a careful 

understanding of how sample size affects clustering quality. CLARANS draws a fresh sample of 

feasible centers before each calculation of SSQ improvement. All of the k-medoid types of 

approaches, including PAM, CLARA, and CLARANS, are known not to be scalable and thus 

are not appropriate in a streaming context. For clustering, k-means is a widely used heuristic but 
alternate algorithms have also been developed such as k-medoids, CURE and the popular 

BIRCH.  

 

K-medoid 

The  basic  strategy  of  k-medoids  algorithm  is  each cluster is represented by one of the 

objects located near the  center of  the  cluster.  PAM  (Partitioning  around  Medoids) was  one  

of  the  first  k-medoids  algorithm  is  introduced.   

 

k-medoid clustering algorithm: 

1. Initialize: randomly select k of the n data points as the medoids 

2. Associate each data point to the closest medoid.  

   closest here is defined using any valid distance metric, most commonly Euclidean   

distance, Manhattan distance or Minkowski distance. 

3. For each medoid m 

1. For each non-medoid data point o 
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2. Swap m and o and compute the total cost of the configuration 

4. Select the configuration with the lowest cost. 

repeat steps 2 to 5 until there is no change in the medoid 
 

K-Means 

The k-means method is the standard clustering algorithm, described by Hartigan and still enjoys 

widespread use. The method partitions the data into k clusters, where the k is supplied by the 

user. Clusters are described by the p-vector mean of the objects contained in the cluster, referred 

to as a centroid. 

The algorithm partitions the objects so as to minimize the within-cluster discrepancies, where a 

discrepancy is defined as the difference between an object and its centroid. The k-means 
algorithm is as follows: 

1. Create k centroids to initialize the algorithm. 

2. Assign each of the n objects to the cluster for which it has the smallest L2 norm. 

3. Update the centroids in light of the current membership. 
4. For each object i, where xi ∈  Cj calculate: 
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Update the values of the relevant centroids. 

4. If an object has been moved in the last n calls to Step 4, go to Step 3. Otherwise stop. 

3.3 CLARA  

An obvious way of clustering larger datasets is to try and extend existing methods so that they 

can cope with a larger number of objects. The focus is on clustering large numbers of objects 

rather than a small number of objects in high dimensions. Kaufman and Rousseau (1990) 

suggested the CLARA: Clustering for Large Applications algorithm for tackling large 

applications. CLARA extends their k-medoids approach for a large number of objects. It works 

by clustering a sample from the dataset and then assigns all objects in the dataset to these 

clusters. 

This algorithm relies on the sampling approach to handle large data sets. Instead of finding 

medoids for the entire data set, CLARA draws a small sample from the data set and applies the 

PAM algorithm to generate an optimal set of medoids for the sample. The quality of resulting 

medoids is measured by the average dissimilarity between every object in the entire data set D 

and the medoid of its cluster, defined as the following cost function: 
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where M is a set of selected medoids, dissimilarity(Oi, Oj) is the dissimilarity between objects Oi and Oj, 

and rep(M, Oi) returns a medoid in M which is closest to Oi. 
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The algorithm is as follows: 

1. Draw a sample from the n objects and cluster it into k groups. 

2. Assign each object in the dataset to the nearest group. 

3. Store the average distance between the objects and their respective groups. 

4. Repeat the process five times, selecting the clustering with the smallest average distance. 

While providing a means to assign a large number of objects to groups, CLARA is 

clearly not ideal. Let M be the maximum number of objects that our clustering method can 

process in a reasonable time. In cases where n >> M, clustering a small sample from the data 

will often result in some groups present in the data being missed entirely.  

 

3.4 CLARANS 

Instead of exhaustively searching a random subset of objects, CLARANS proceeds by searching 

a random subset of the neighbours of a particular solution, S. Thus the search for the best 

representation is not con_ned to a local area of the data. The CLARANS algorithm is governed 

by two parameters: MAXneigh, the maximum number of neighbours of S to assess; and MAXsol, 

the number of local solutions to obtain. 

The CLARANS algorithm is as follows: 

1. Set S to be an arbitrary set of k representative objects. Set i = 1. 

2. Set j = 1. 

3. Consider a neighbour R of S at random. Calculate the total swap contribution of the two    

neighbours. 

4. If R has a lower cost, set R = S and go to Step 2. 
Otherwise increment j by one. If j ≤  MAXneigh go to Step 3. 

5. When j > MAXneigh, compare the cost of S with the best solution found so far. If the cost of S 

is less, record this cost and the representation. 

        Increment i by one. If i > MAXsol stop, otherwise go to Step 1. 

3.5 BIRCH 

BIRCH builds a hierarchical data structure to incrementally cluster the incoming points using 

the available memory and minimizing the amount of I/O required. The complexity of the 
algorithm is O(N) since one pass suffices to get a good clustering though, results can be 

improved by allowing several passes. 

BIRCH uses a hierarchical data structure called Clustering Feature tree (CF tree) for 

partitioning the incoming data points in an incremental and dynamic way. This section is 

organized as follows. First we give an overview of the four phases in the BIRCH algorithm and 

the construction of the CF tree. Theoretical basics of Clustering Features are given and it is 

described how distance metrics can work solely on Clustering Features. We finish this section 

by revisiting how BIRCH can fit large datasets into RAM using these Clustering Features to 

compress the data. 

BIRCH employs four difierent phases during each clustering process. 

1. Linearly scan all data points and insert them in the CF tree as described earlier. 

2. Condense the CF tree to a desirable size depending on the clustering algorithm employed in 

step three. This can involve removing outliers and further merging of clusters. 
3. Employ a global clustering algorithm using the CF tree's leaves as input. The Clustering 

Features allow for effective distance metrics. This is feasible because the CF tree is very densely 

compressed at this point.  Here an agglomerative hierarchial clustering algorithm is applied 

directly to the subclusters represented by their CF vectors. It also provides the flexibiltiy of 

allowing the user to specify either the desired number of clusters or the desired diameter 

threshold for clusters. After this step we obtain a set of clusters that captures major distribution 
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pattern in the data. However there might exist minor and localized inaccuracies which can be 

handled by an optional step 4 

4. Optionally refine the output of step three. All clusters are now stored in memory. If desired 
the actual data points can be associated with the generated clusters by reading all points from 

disk again. 

Clustering Feature : Given N d-dimensional data points in a cluster, Xi, CF vector of the 

cluster is defined as a triple CF = (N,LS,SS), where LS is the linear sum and SS is the square 

sum of data points. 

CF tree : A CF tree is a height balanced tree with two parameters: branching factor B and 

threshold T. Each non-leaf node contains at most B entries of the form [CFi,childi], where childi 
is a pointer to its ith child node and CFi is the subcluster represented by this child. A leaf node 

contains at most L entries each of the form [CFi] . It also has to two pointers prev and next 

which are used to chain all leaf nodes together. The tree size is a function of T. The larger the T 

is, the smaller the tree is. We also require a node to fit in a page of size of p. B and L are 

determined by P. So P can be varied for performance tuning. It is a very compact representation 

of the dataset because each entry in a leaf node is not a single data point but a sub-cluster. 

 

3.6 CURE 

Hierarchical methods decompose a dataset into a tree-like structure. Two common ones are 

HAC and CURE. Since these methods are designed to discover clusters of arbitrary shape, they 

do not necessarily optimize SSQ. CURE (Clustering Using REpresentatives) is an efficient data 

clustering algorithm for large databases that is more robust to outliers and identifies clusters 

having non-spherical shapes and wide variances in size. 

With the partitional clustering algorithms, which uses the sum of squared errors criterion when 

there are large differences in sizes or geometries of different clusters, the square error method 

could split the large clusters to minimize the square error which is not always correct. Also, with 

hierarchic clustering algorithms these problems exist as none of the distance measures between 

clusters (dmin,dmean) tend to work with different shapes of clusters. Also the running time is 

high when n is very large. The problem with the BIRCH algorithm is that once the clusters are 

generated after step 3, it uses centroids of the clusters and assign each data point to the cluster 

with closest centroid. Using only the centroid to redistribute the data has problems when clusters 

do not have uniform sizes and shapes. 

To avoid the problems with non-uniform sized or shaped clusters, CURE employs a novel 

hierarchical clustering algorithm that adopts a middle ground between the centroid based and all 

point extremes. In CURE, a constant number c of well scattered points of a cluster are chosen 

and they are shrunk towards the centroid of the cluster by a fraction α. The scattered points after 

shrinking are used as representatives of the cluster. The clusters with the closest pair of 

representatives are the clusters that are merged at each step of CURE's hierarchial clustering 
algorithm. This enables CURE to correctly identify the clusters and makes it less sensitive to 

outliers. The running time of the algorithm is O(n2 log n) and space complexity is O(n). 

The algorithm cannot be directly applied to large databases. So for this purpose we do the 

following enhancements 

Random sampling: To handle large data sets, we do random sampling and draw a sample data 

set. Generally the random sample fits in main memory. Also because of the random sampling 

there is a trade off between accuracy and efficiency. 
Partitioning for speed up: The basic idea is to partition the sample space into p partitions. 

Then in the first pass partially cluster each partition until the final number of clusters reduces to 

np/q for some constant q ≥ 1. Then run a second clustering pass on n/q partial clusters for all the 

partitions. For the second pass we only store the representative points since the merge procedure 

only requires representative points of previous clusters before computing the new representative 

points for the merged cluster. The advantage of partitioning the input is that we can reduce the 

execution times. 



Advanced Computing: An International Journal ( ACIJ ), Vol.2, No.6, November 2011 

157 

 

 

 

Labeling data on disk: Since we only have representative points for k clusters, the remaining 

data points should also be assigned to the clusters. For this a fraction of randomly selected 

representative points for each of the k clusters is chosen and data point is assigned to the cluster 
containing the representative point closest to it. 

CURE(no. of points, k) 

Input : A set of points S 

Output : k clusters 

1. For every cluster u (each input point), in u.mean and u.rep store the mean of the points in 

the cluster and a set of c representative points of the cluster initially c = 1 since each cluster 

has one data point. Also u. closest stores the cluster closest to u. 
2. All the input points are inserted into a k-d tree T. 

3. Treat each input point as separate cluster, compute u.closest for each u and then insert each 

cluster into the heap Q.  

4. While size(Q) > k. 

5. Remove the top elemnt of Q(say u) and merge it with its closest cluster u.closest(say v) and 

compute the new representative points for the merged cluster w. Also remove u and v from 

T and Q. 

6. Also for all the clusters x in Q, update x.closest and relocate x. 

7. Insert w into Q. 

8. Repeat. 

Hierarchical algorithms, including BIRCH are known to suffer from the problem that 

hierarchical merge or split operations are irrevocable. 

 

3.7 STREAM 

STREAM is an algorithm for clustering data streams described by Guha, Mishra, Motwani and 

O'Callaghan which achieves a constant factor approximation for the k-Median problem in a 

single pass and using small space. 

To understand STREAM, the first step is to show that clustering can take place in small space. 

Small-Space is a divide-and-conquer algorithm that divides the data, S, into  pieces, clusters 

each one of them (using k-means) and then clusters the centers obtained. 

 
Small-Space Algorithm representation 

Algorithm Small-Space(S) 

1. Divide S into l disjoint pieces X1,...,X. 

2. For each i, find O(k) centers in Xi. Assign each point in Xi to its closest center. 

3. Let X' be the O(lk) centers obtained in (2), where each center c is weighted by the 

number of points assigned to it. 

4. Cluster X' to find k centers. 

We can also generalize Small-Space so that it recursively calls itself i times on a successively 

smaller set of weighted centers and achieves a constant factor approximation to the k-median 

problem. 

The problem with the Small-Space is that the number of subsets  that we partition S into is 

limited, since it has to store in memory the intermediate medians in X'. So, if M is the size of 

memory, we need to partition S into  subsets such that each subset fits in memory, (n/) and so 

that the weighted k centers also fit in memory, k<M. But such an  may not always exist. 

The STREAM algorithm solves the problem of storing intermediate medians and achieves better 

running time and space requirements. The algorithm works as follows: 
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1. Input the first m points; using the randomized algorithm presented in [3] reduce these to 

O(k) (say 2k) points. 

2. Repeat the above till we have seen m2/(2k) of the original data points. We now have m 
intermediate medians. 

3. Using a local search algorithm, cluster these m first-level medians into 2k second-level 

medians and proceed. 

4. In general, maintain at most m level-i medians, and, on seeing m, generate 2k level-i+ 1 

medians, with the weight of a new median as the sum of the weights of the intermediate 

medians assigned to it. 

5. When we have seen all the original data points, we cluster all the intermediate medians 
into k final medians, using the primal dual algorithm. 

 

3.8 LSEARCH 

STREAM needs a simple, fast, constant-factor approximation k-Median subroutine. We believe 

ours is the first such algorithm that also guarantees flexibility in k. The LSEARCH algorithm 

does not directly solve k-Median but could be used as a subroutine to a k-Median algorithm, as 

follows. We first set an initial range for the facility cost z between 0 and an easy-to-calculate 

upper bound; we then perform a binary search within this range to find a value of z that gives us 
the desired number k of facilities; for each value of z that we try, we call Algorithm CG to get a 

solution. 

Algorithm CG(data set N, facility cost z) 

1. Obtain an initial solution (I; f) (I fi N of facilities, f an assignment function) that gives a n- 

approximation to facility location on N with facility cost z. 

2. Repeat (log n) times: 

• Randomly order N. 

• For each x in this random order: calculate gain(x), and if gain(x) > 0, add a facility there 

and perform the allowed reassignments and closures. 
 

For a given facility location instance, there may exist a k such that there is no facility cost for 

which an optimal solution has exactly k medians, but if the dataset is “naturally k-clusterable," 

then our algorithm should find k centers. 
On each iteration, we expect the total solution cost to decrease by some constant fraction of the 

way to the best achievable cost, if our initial solution is a constant-factor approximation rather 

than an n-approximation as used by Charikar and Guha, we can reduce our number of iterations 

from Θ (log n) to Θ(1). 

Initial Solution (data set N, facility cost z) 

1. Reorder data points randomly 

2. Create a cluster center at the first point 
3. For every point after the first, 

• Let d be the distance from the current data point to the nearest existing cluster center 

• With probability d=z create a new cluster center at the current data point; otherwise add 

the current point to the best current cluster. 

This algorithm runs in time proportional to n times the number of facilities it opens and obtains 

an expected approximation to optimum. 
Next we need to Obtain Feasible Centers, Assume the points c1,....., ck constitute an optimal solution to 

the k-Median problem for the dataset N, that Ci is the set of points in N assigned to ci, and that ri is the 

average distance from a point in Ci to ci for 1 ≤  i ≤  k. 

Therefore, we will give a Facility Location subroutine that our k-Median algorithm will call; it will take 

a parameter ℜ∈ε  that controls how soon it stops trying to improve its solution. 
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Algorithm FL(N, d(.,.), z, ε , (I, a)) 

1. Begin with (I,a) as the current solution 

2. Let C be the cost of the current solution on N. 

Consider the feasible centers in random order, and for each feasible center y,  if gain(y) > 0, perform all 

advantageous closures and reassignments, to obtain a new solution (I`, a`) . 

3. Let C0 be the cost of the new solution; if C` be the cost of the new solution;  

if C` ≤  (1 - ε )C, return to step 2 

Now we will give our k-Median algorithm for a data set N with distance function d. 
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The initial value of zmax is chosen as a trivial upper bound on the value of z we will be trying to 

find. The running time of LSEARCH is O(nm + nk log k) where m is the number of facilities 

opened by InitialSolution. m depends on the properties of the dataset but is usually small, so this 

running time is a significant improvement over previous algorithms. 
 

4. CONCLUSION 

Most of the algorithms generally assume some implicit structure in the data set. The problem, 

however, is that usually you have little or no information regarding the structure, which is, 

paradoxically, what you want to uncover. Another issue to keep in mind is the kind of input and 

tools that the algorithm requires. An additional issue related to selecting an algorithm is 

correctly choosing the initial set of clusters. This paper provides an broad survey of the most 

basic techniques, and as is stated on the title, an overview of the elementary clustering 

techniques most commonly used. 
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