
Advanced Computing: An International Journal (ACIJ), Vol.3, No.5, September 2012

DOI : 10.5121/acij.2012.3502 9

FRAMEWORKS BETWEEN COMPONENTS AND
OBJECTS

Mohamed Belal
1
, Ayman Khedr

2
, Ahmed Gohar

3

1
Prof. Computer Science Department, Faculty of Information and Computer (Egypt)

dr.mohamedbelal@gmail.com
2
Dr. Information System Department, Faculty of Information and Computer (Egypt)

aymankhedr@gmail.com

3
Information System Department, Faculty of Information and Computer (Egypt)

mcpgohar@hotmail.com

ABSTRACT

Before the emergence of Component-Based Frameworks, similar issues have been addressed by other

software development paradigms including e.g. Object-Oriented Programming (OOP), Component-

Based Development (CBD), and Object-Oriented Framework. In this study, these approaches especially

object-oriented Frameworks are compared to Component-Based Frameworks and their relationship are

discussed. Different software reuse methods impacts on architectural patterns and support for

application extensions and versioning. It is concluded that many of the mechanisms provided by

Component-Based Framework can be enabled by software elements at the lower level. The main

contribution of Component-Based Framework is the focus on Component development. All of them can be

built on each other in layered manner by adopting suitable design patterns. Still some things such as

which method to develop and upgrade existing application to other approach.

KEYWORDS

Component-Based Development, CBD, Component-Based Framework, CBF, Framework, Object
Oriented Framework, OOF, Object-Oriented Programming, OOP.

1. INTRODUCTION

Significant improvements in software productivity and quality reducing development costs

provided by software reuse. One of the main development approaches for business and

commercial systems is reuse-based software engineering. Ranging from fine-grain functions to

entire application systems[1]. It is difficult to reuse medium-grain program components, as it is

significantly larger than individual objects or procedures, with more functionality, but they are

smaller and more specific than application systems[1].

Since then most influential OO-languages in industry have been C++ and Java. As a result of

research and development (R/D) in OO many tools and technologies have been introduced to

support it as modelling languages, application servers, OO-database or relational mapping tools

and OO-based development processes. Then Component-based software engineering (CBSE)

emerged as a reuse-based approach to software systems development[1]. The basic idea is

simple: “When developing new systems use components that are already developed” [2].

Components are built to be used and reused in many applications. A component must be well

specified, sufficiently general, easy to understand and adapt, easy to deliver and deploy and easy

to replace[3].

In contrast to earlier object-oriented reuse techniques based on class libraries, framework is

targeted for particular business units and application domains. Frameworks like MacApp play

an increasingly important role in contemporary software development [4, 5].

Advanced Computing: An International Journal (ACIJ), Vol.3, No.5, September 2012

10

Frameworks are one of the most appraised paradigms in software development. However, many

of its claimed benefits have been addressed by previous approaches in software development.

Additionally, software systems are not built using components as the only element of

construction but lower level artefacts are also required[6] while developments in standardization

promoted by major software vendors now mean that components can interoperate within a

framework such as CORBA[1].

The research is structured as follows: first section 2, focus on the background of OOP and CBD

paradigms are briefly introduced and the approach of software reuse discussed. Next, in section

3, discussing frameworks as reusable design. Then Next, in section 4, the both approaches are

compared with each another from wither theoretical and practical prospective. Finally, in

section 5, the findings of these comparisons are discussed and the concluding remarks are made.

2. BACKGROUND

The resulting increase in reuse should dramatically improve time to market, lifecycle cost, and

quality[7]. It becomes apparent that what is needed is something that addresses to build

individual systems that can be treated as atomic units and can easily be made to cooperate with

each other[8].

Reuse of existing assets will enable projects to decrease the cost of developing and marinating

of software. This software that has been multiple times will possess fewer defects than freshly

coded components which results in decrease risk in creating new software when available

reusable components already encompass the desired functionality and have standard interfaces

to facilitate integration. Standard interfaces and common use of components across products

facilitate case of use and interoperability[9]:.

Using reuse leads to improve functionality and performance, which can be amortized over

multiple uses of the assets which is economically justified than the case where they would only

be for single product. Design time is drastically reduced because key architectural decision have

been made are embodied in the component model and framework[10]. Reuse-based software

engineering becomes the main development approach for business and commercial systems

ranging from fine-grain functions to entire application systems[1].

Figure1. Reusability through development techniques[9]

2.1. Object Oriented Programming and Development

In object oriented languages the execution flow of programs is passing messages between

objects which represents concepts of the problem domain. Objects encapsulate related data and

operations in one unit [11] this grouping of objects to classes and allowing subclasses to inherit

and/or implement from their parent classes allows development using an existing code[12].

Advanced Computing: An International Journal (ACIJ), Vol.3, No.5, September 2012

11

Object oriented modelling is usually the first step in object oriented development model. From

high level view of the problem domain and use cases, the design phase continues to lower level

implementation view of classes and objects. Modelling of these aspects is usually carried out in

standard modelling language such as UML. Architectures oriented towards model driven

architecture(MDA), where actual program code can be compiled from modelling effort[13].

Regarding OOSD, it increases code reuse, easy building on existing code, better change

tolerance and decrease in errors by encapsulation.

2.2. Component Based Development

A software component has been described as ”a nontrivial, nearly independent and replaceable

part of a system that full-fills a clear function in the context of a well-defined architecture” by

Brown and Wallnau [14]. Clemens Szyperski and David Messerschmitt present the following

five principles that a software component should have; Multiple-use, Non-context-specific,

Compassable with other components, Encapsulated, A unit of independent deployment and

versioning[15]

Unlike objects in the Object Oriented Programming (OOP), a component is an ” a widely

adopted definition due to Szyperski [16] is the following: “A software component is a unit of

composition with contractually specified interfaces and explicit context dependencies only. A

software component can be deployed independently and is subject to composition by third

parties”.

Making applications from software components had been a dream in software engineering

community since its very early time[17]. The purpose of CBSE is to improve quality of service

(QoS), productivity and time-to-market in software development. Components might change to

be updated based on the requirements of system changes. Summarily, they must be qualified

and adapted if reusable components are available for potential integration [17].

3. FRAMEWORKS

Reuse approach is expected to revolutionize the booth development and maintenance of

software systems. The resulting increase in reuse should dramatically improve time. Designers

often trade simplicity for power [18].Frameworks represent code reuse. It is applied in more

contexts and in the development process, so can have a larger impact on a project. But most

design reuse is informal, and happens through using experienced developers. There is no

standard design notation and there are no standard catalogues of designs to reuse so a single

company can standardize, but this will not lead to industry-wide reuse [19].

Framework is a form of design reuse which is similar to other techniques for reusing high-

level design, such as templates or schemas [20] . The main difference is that frameworks are

expressed in a programming language, but others usually depend on a special purpose design

notation and require special software tools.

According to the nature of the frameworks four major types had been classified as follow;

Object-Oriented Framework which Consists of a set of classes that work together to solve a

family of related problems. Software developers use inheritance and delegation to extend the

framework. Examples are Model-View-Controller MVC, Microsoft Foundation Classes

MFC[21]. Component-Based Framework which defines a set of Abstract Interactions which

define the protocols by which components cooperate with each component takes on roles in

various Abstract interactions which defined by a Component Framework that provides a

conceptual framework in which to think about solutions to the problem domain addressed by the

framework[22]. Enterprise or Business Framework which Provides a domain-specific, business

solution that can be extended into an organization; not necessarily limited to Component-Based

Advanced Computing: An International Journal (ACIJ), Vol.3, No.5, September 2012

12

Development; Examples: SAP R3, Siebold, Baan Company's BaanSeries [23].finally

Technology Framework which Provides a standard, generic software foundation; not necessarily

limited to Component-Based Development; Examples are COM, CORBA, Java.

4. COMPARING APPROACHES

This study will compare between object-oriented frameworks and component-based frameworks

from both theoretical and practical prospective as follows:

4.1. Theoretical prospective

4.1.1. Comparing Based on Nature Dimension

The first important issue to understand the differences between these two approaches is to keep

the sense of what differentiates the object and components. CBSE embodies “the buy, don’t

build philosophy”. The main difference between a component and an object is that: a

component is meant to be a runtime entity, whereas an object is an instance of a class [24]. OO

with its deterministic and limited features (e.g., inheritance) cannot provide adequate flexibility

required for building today's ever increasing complex software systems [25].

Inheritance [24] is a less useful concept in a component context that it is in an object-oriented

context. The movement from inheritance based solutions to object compositions and message

for forwarding and delegation, which was already on its way in the Object-Oriented (OO)

world, has gained speed in the component world. A component comes to life through objects

and therefore could contain one or more classes or immutable prototype. If only objects become

visible to clients, there is no way to tell whether or not a component is purely object-oriented

inside [26].

However, components have borrowed various concepts from objects with some additions and

some exclusion. The most important additions are components' implemented nature and

integration capabilities, even at runtime. A components' interface has more power that its

counterpart does in an object because in addition to properties and methods [27]. Object are

usually not thread-secure [24], because the designer knows or think he knows how the objects

are going to be used. In a component context, he cannot be sure that, and therefore the

components have to be secured.

4.1.2. Comparing Based on Enterprise Application Development Dimension

Component-based framework aims to realize long waited software reuse by changing both

software architecture and software process. Because of the extensive uses of components, CBSE

process is quite different from that of the traditional waterfall approach. CBSE requires focus on

system specification and development, and also requires additional consideration for overall

system context, [28]. Building complex objects can also use inheritance, while it is limited to

composition in component[27].

4.1.3. Comparing Based on Reuse Dimension

Booth frameworks do work at different levels of abstraction, OO at object level, CBD at

component level. This means that also reuse techniques are also working on different levels of

abstraction. Software reuse can be divided to four different dimensions: abstraction, selection,

integration and specialization [29]. To analyze differences in reuse techniques, these techniques

can be categorized along dimensions as discussed in Table 1.

Advanced Computing: An International Journal (ACIJ), Vol.3, No.5, September 2012

13

Table 1. Dimensions of reuse

Method/ Dimension OOD CBD

Abstraction Classes, Interfaces, Data hiding

and encapsulation

Component Interfaces,

Encapsulation

Selection Class libraries Component libraries

Integration Method calls, ORBs etc. Function class, ORBs etc.

Specialization Inheritance NA

As it can be seen, CBD methods for reuse are quite different to methods. Discoverability and

use of component repositories is basic CBD principles to enable reuse. For CBD and OO

comparable method can be use of class and component libraries.

4.1.4. Comparing Based on Layering and Architectural Pattern Dimension

Layering is one key architectural principle in traditional software development. Martin

Fowler[30] suggests three key architectural layers that are used in enterprise applications (Table

2). Note: These layers are logical layers in application and can be distributed differently in

normal N-tier architecture between tiers. For example in case of a thin client, most of the

presentation logic could be on the server and in some cases to have faster response times some

of the domain logic could be implemented on the client.

Table 2. Three Principal Layers

Layer Responsibilities

Presentation Provision of services, display of information

Domain Logic that is the real point of the system.

Data Source Communication with databases, messaging systems, transaction managers,

other packages

When compared to N-tier architecture, in OO- or Component-based development objects or

components can call each other without tiered layering approach. Application front end is part

of the presentation layer; domain logic is implemented in Business Logic. According to Michael

Stal [31] same patterns that have been found usable in J2EE applications are directly applicable

to Frameworks.

CBD with COTS Modern enterprise application systems developing process become more and

more large-scaled, uneasily controlled, complex. Also, due to time-to-market, no developing

standard pressure and growing demand of searching for a cost-effective, efficient and satisfying

multiple Quality of service (QoS) requirement software developing paradigm, enterprise

application are developed by using commercial-off-the-shelf (COTS) components rapidly.

Comparison to the traditional approach in which software systems can only be implemented

from scratch; these COTS components can be developed by different vendor using different

languages and different computer platforms[32].

4.1.5. Comparing Based on How to Build Dimension

CBD is focused on the identification of reusable entities and relations between them, starting

from the system requirements. The early design process includes two essential steps: Firstly,

specification of system architecture in terms of functional components and their interaction, this

giving a logical view of the systems and secondly, specification of system architecture consists

of physical components.

Different lifecycle models, established in software engineering, can be used in CBD. These

models will be modified to emphasize component-centric activities. Let us, consider, for

Advanced Computing: An International Journal (ACIJ), Vol.3, No.5, September 2012

14

example, the waterfall model using an extreme component-based approach. Figure 2 shows the

waterfall model and the meaning of the phases. Identifying requirements and a design in the

waterfall process is combined with finding and selecting components[3]. The design includes

the system architecture design and component identification/selection.

Figure 2. The development cycle compared with the waterfall model[3]

4.2. Practical prospective

4.2.1. Comparing Based on Extending Application Dimension

Regardless of the adopted approach, the developed software artefacts will change and evolve.

Some changes can be made purely on the implementation level without changing the interface

behaviour of objects or components. These kinds of changes do not necessarily pose problems

in the software system because this does not change the way the element is used externally.

The version and evolution management mechanisms of different component-based technologies

are discussed by Stuckenholz, 2005 [33]. In short, it can be said that most of the component-

based technologies provide basic mechanisms for distinguishing between different versions of

the component.

Extensions for component-based approaches depend on the used technology and their detailed

discussion is out of the scope of this study [21]. The need for extensions depends on the

adequateness of the original technology. Additionally, the layering of components and objects is

meaningful here: for example, several security APIs exist for Java (objects) and they can be

directly used in J2EE components. However, also the level of abstraction should be taken into

account.

4.2.2. Comparing Based on Application Deployment Dimension

CBD changes the nature of software [8]. As illustrated in Figure 3, it reveals the need for

redefinition of what an application is? Components become highly visible at run-time, and this

affects the way software is built, assembled, deployed, tested, evolved, marketed, and sold.

CBD is not only development approach nut also deployment approach, and this leads to a new

way to market and buy software solutions.

Figure 3. Component-based approach [8]

Advanced Computing: An International Journal (ACIJ), Vol.3, No.5, September 2012

15

4.2.3. Comparing Based on Scope Dimension

It can also be stated that the scope and level of ambition associated with each of the approaches

is different. To truly leverage from Components, one should aim at high component reusability

at the enterprise level. Objects, on the other hand, can be adopted for a single application

development project but they can still provide value. An enterprise-wide OO-architecture is of

course also possible and significant, even if it would not result in the use of components or

services.

The objectives of the discussed software development approaches Object-Orientation and

Component-based frameworks are similar to some extent. They can all be considered as ways to

promote software reuse and methods for structuring software systems into artifacts that can be

managed separately for each other. However, these approaches have different scopes and

focuses and they can be considered to operate on different levels of abstraction.

Conceptually, the approaches define different software system characteristics. By definition, CB

frameworks are software components nature. Clearly, a good framework captures the basic

characteristics of a component. However, the characteristics of CB frameworks define in more

detail the framework architecture that these specific components constitute.

4. CONCLUDING REMARKS

Some of the problems with frameworks have been described already. Because they are powerful

and complex, they are difficult to learn. This means they require better documentation and

longer training than other systems. They are hard to develop, therefore they cost more to

develop and require better programmers than normal application development. These are some

of the reasons frameworks are not used more widely.

Although reuse is valuable, it is not free companies that are going to take advantage of reuse

must pay its price. One of the strengths of frameworks is that they are represented by

reusability.

One of the problems with using a particular language is that it restricts frameworks to systems

using that language. In general, different object-oriented programming languages don’t work

well together, so it is not cost-effective to build an application in one language with a

framework written in another.

Current programming languages are good at describing the static interface of an object, but not

its dynamic interface. Because frameworks are described with programming languages, it is

hard for developers to learn the collaborative patterns of a framework by reading it. Instead,

they depend on the documentation and talking to experts. Patterns are one approach to

improving the documentation. Another approach is to describe the constraints and

interactions between components formally, such as with contracts [34]. But since part of the

strength of frameworks is the fact that the framework is expressed in code, it might be better to

improve object-oriented languages so that they can express patterns of collaboration more

clearly.

Component-Based Frameworks are a practical way to express reusable designs. They deserve

the attention of both researchers and practitioners. Although we need better ways to express

and develop frameworks, they have already shown themselves to be valuable. Table 3

summarizing the main differences between both component and object based frameworks.

Advanced Computing: An International Journal (ACIJ), Vol.3, No.5, September 2012

16

Table 3. A summary comparison of CBD and OOD [8, 24-27]

Comparison

Factors

CB Framework OO Framework

Flexibility More flexible in terms of

hardware and software

Less flexible

Reliability Thread safe and secure Dependent on developers’

Reusability Run-time Development-time

Building strategy Composition is major Inheritance is

unnecessary

Composition and Inheritance

are both used

Deployment Independent parts of Software Monolithic software

application

Interoperability Provides communication

between different

technologies on different platform

Development is restricted

with one or more technologies

on

one platform

REFERENCES

[1] I. Sommerville, Software Engineering, Publisher, City, 2010.

[2] I. Crnkovic, M. Larsson, Component-based Software Engineering-New Paradigm of

Software Development, Publisher, City, 2001.

[3] I. Crnkovic, Component-based software engineering-new challenges in software

development, in, IEEE, 2003, pp. 9-18.

[4] M. Fayad, D.C. Schmidt, Object-oriented application frameworks, Publisher, City,

1997.

[5] H.S. Chae, J.F. Cui, J.W. Park, J.G. Park, W.J. Lee, An object-oriented framework

approach to flexible availability management for developing distributed applications,

Publisher, City, 2009.

[6] M. Dragone, D. Lillis, R. Collier, G.M.P. O'Hare, SoSAA: a framework for

integrating components & agents, in, ACM, 2009, pp. 722-728.

[7] C. Atkinson, J. Bayer, O. Laitenberger, J. Zettel, Component-based software

engineering: The kobra approach, in, 2000.

[8] P. Herzum, O. Sims, Business Components Factory: A Comprehensive Overview of

Component-Based Development for the Enterprise, John Wiley & Sons, Inc. New York,

NY, USA, 2000.

[9] K. Ayse, Component-Oriented Modelling Of Land Registry And Cadastre

Information System Using COSEML, in: Computer Engineering Department, Indian

Institute of Technology, Bombay, India, 2002.

[10] F. Bachman, L. Bass, C. Buhman, S. Comella-Dorda, F. Long, C.-M.U.P.P.S.E.

INST, Technical Concepts of Component-Based Software Engineering, Volume 2, in,

2000.

[11] R.W. Sebesta, Concepts of programming languages, Addison-Wesley, 2002.

[12] Y. Zhang, R. Liang, Y. Zheng, M. Berry, Y. Wang, Y. Li, Teaching Object

Oriented Database with Db4o, Publisher, City, 2012.

[13] T.O. Meservy, K.D. Fenstermacher, Transforming software development: an MDA

road map, Publisher, City, 2005.

[14] L. Grunske, Early quality prediction of component-based systems–A generic

framework, Publisher, City, 2007.

Advanced Computing: An International Journal (ACIJ), Vol.3, No.5, September 2012

17

[15] Wikipedia, Software componentry, in, 2007.

[16] C. Szyperski, D. Gruntz, S. Murer, Component software: beyond object-oriented

programming., in, Addison-Wesley, 2002.

[17] F. Siddiqui, Component Based Software Engineering: A Look at Reusable

Software Components, Publisher, City, 2003.

[18] R.E. Johnson, Frameworks=(components+ patterns), Publisher, City, 1997.

[19] D.C. Schmidt, F. Buschmann, Patterns, frameworks, and middleware: their

synergistic relationships, in, IEEE, 2003, pp. 694-704.

[20] M.E. Markiewicz, C.J.P. de Lucena, Object oriented framework development,

Publisher, City, 2001.

[21] J.M. Lucassen, S.H. Maes, MVC (Model-View-Controller) based multi-modal

authoring tool and development environment, in, Google Patents, 2011.

[22] G.T. Heineman, W.T. Councill, Component-based software engineering : putting

the pieces together, Addison-Wesley, Boston, 2001.

[23] M. Wang, Integrating SAP to Information Systems Curriculum: Design and

Delivery, Publisher, City, 2011.

[24] M. Huizing, Component Based Development, Publisher, City, 1999.

[25] M. Kavianpour, The Need for Component-based Software: Application of OMG

CORBA in Building an Engineering Environment for Component Construction and

Composition, Publisher, City, 1997.

[26] C. Szyperski, Components and objects together, Publisher, City, 1999.

[27] A. Dogru, M. Tanik, A process model for component-oriented software

engineering, Publisher, City, 2003.

[28] I. Kaur, P.S. Sandhu, H. Singh, V. Saini, Analytical Study of Component Based

Software Engineering, Publisher, City, 2009.

[29] C.W. Krueger, Software reuse, Publisher, City, 1992.

[30] M. Fowler, Patterns of enterprise application architecture, Addison-Wesley

Professional, 2003.

[31] M. Stal, Using architectural patterns and blueprints for service-oriented

architecture, Publisher, City, 2006.

[32] A. Gokhale, D.C. Schmidt, B. Natarajan, N. Wang, Applying model-integrated

computing to component middleware and enterprise applications, Publisher, City, 2002.

[33] A. Stuckenholz, Component evolution and versioning state of the art, Publisher,

City, 2005.

[34] Y. Jia, M. Tan, Y. Gu, The evolutionary approach to semantics-driven CBD

automation, in, IEEE, 2002, pp. 98-104.

