
Advanced Computing: An International Journal (ACIJ), Vol.3, No.6, November 2012

DOI : 10.5121/acij.2012.3603 15

A MULTI-POPULATION BASED FROG-MEMETIC
ALGORITHM FOR JOB SHOP SCHEDULING

PROBLEM

Somayeh Kalantari
1
 and Mohammad SanieeAbadeh

2

1
Department of Electrical, Computer, and Biomedical Engineering, Islamic Azad

University, Qazvin Branch, Qazvin, Iran
sk_kalantari@yahoo.com

2
Department of Electrical and Computer Engineering, Tarbiat Modares University,

Tehran, Iran
saniee@modares.ac.ir

ABSTRACT

The Job Shop Scheduling Problem (JSSP) is a well known practical planning problem in the

manufacturing sector. We have considered the JSSP with an objective of minimizing makespan. In this

paper, we develop a three-stage hybrid approach called JSFMA to solve the JSSP. In JSFMA,

considering a method similar to Shuffled Frog Leaping algorithm we divide the population in several sub

populations and then solve the problem using a Memetic algorithm. The proposed approach have been

compared with other algorithms for the Job Shop Scheduling and evaluated with satisfactory results on a

set of the JSSP instances derived from classical Job Shop Scheduling benchmarks. We have solved 20

benchmark problems from Lawrence’s datasets and compared the results obtained with the results of the

algorithms established in the literature. The experimental results show that JSFMA could gain the best

known makespan in 17 out of 20 problems.

KEYWORDS

Memetic algorithm, Job Shop Scheduling problem, Shuffled Frog Leaping algorithm, Multi-population

1. INTRODUCTION

Scheduling is one of the most important issues in the planning and operation of the

manufacturing systems [1]. The Job Shop Scheduling problem consists of a set of jobs, job= {j1,

j2… j n}, and a set of machines, machine= {m1, m2… m n}. In the general JSSP, each job

comprises a set of tasks which must each be done on a different machine for different specified

processing times, in a given job-dependent order. The standard Job Shop Scheduling problem

makes the following constraints and assumptions [2]:

• The processing time for each operation using a particular machine is defined.

• There is a pre-defined sequence of operations that has to be maintained to complete

each job.

• Delivery times of the products are undefined.

• There is no setup or tardiness cost.

• A machine can process only one job at a time.

• Each job is performed on each machine only once.

• No machine can deal with more than one type of task.

• The system cannot be interrupted until each operation of each job is finished.

• No machine can halt a job and start another job before finishing the previous one.

Advanced Computing: An International Journal (ACIJ), Vol.3, No.6, November 2012

16

• Each and every machine has full efficiency.

Table1 shows a standard 6×6 benchmark problem (j=6 and m=6) from [3]. In this example, job

1 must go to machine 3 for 1 unit of time, then to machine 1 for 3 units of time, and so on.

Table 1.The 6×6 benchmark problem

(Machine,Time) (m,t) (m,t) (m,t) (m,t) (m,t) (m,t)

Job1 3,1 1,3 2,6 4,7 6,3 5,6

Job2 2,8 3,5 5,10 6,10 1,10 4,4

Job3 3,5 4,4 6,8 1,9 2,1 5,7

Job4 2,5 1,5 3,5 4,3 5,8 6,9

Job5 3,9 2,3 5,5 6,4 1,3 4,1

Job6 2,3 4,3 6,9 1,10 5,4 3,1

In this paper, the problem is to minimize the total elapsed time between the beginning of the

first task and the completion of the last task, the makespan. The other measures of schedule

quality exist, but shortest makespan is the simplest and most widely used criterion. For the

above problem the minimum makespan is known to be 55. The schedule is shown in Figure 1

[4].

Figure 1.An optimal schedule for 6×6 JSSP benchmark

Due to the practical significance of the JSSP, it has drawn the attention of researchers for the

last decades. Bruker and Schile were the first to address this problem in 1990 [5]. They

developed a polynomial graphical algorithm for a two-job problem. Haung and Yin used an

improved shifting bottleneck procedure for the JSSP [6]. Chen and Luh used a new alternative

method to Lagrangian relaxation approach [7]. A taboo search algorithm for the JSSP was

applied by Nowicki and Smutnicki [8]. Yang et al. used a clonal selection based Memetic

algorithm for the JSSP [9].

The remainder of the paper is organized as follows. Section 2 describes the Memetic algorithm.

The proposed approach is explained in section 3. Section 4 reports experimental results.

Concluding remarks are given in section 5.

2. MEMETIC ALGORITHM

The term ‘Memetic Algorithms’ [10] (MAs) was introduced in the late 80s to denote a family of

meta-heuristics that have as central theme the hybridization of different algorithmic approaches

for a given problem .The adjective ‘memetic’ comes from the term ‘meme’, coined by R.

Dawkins [11] to denote an analogous to the gene in the context of cultural evolutions. It was

first proposed as a means of conveying the message that, although inspiring for many,

biological evolution should not constrain the imagination to develop population-based method.

Advanced Computing: An International Journal (ACIJ), Vol.3, No.6, November 2012

17

Other forms of evolution may be faster, with cultural evolution being one of those less-

restrictive examples. MAs exploit problem-knowledge by incorporating pre-existing heuristics,

preprocessing data reduction rules, approximation and fixed-parameter tractable algorithms,

local search techniques, specialized recombination operators, truncated exact methods, etc.

Also, an important factor is the use of adequate representations of the problem being tackled.

This results in highly efficient optimization tools. MAs constitute an extremely powerful tool

for tackling combinatorial optimization problems. Indeed, MAs are state-of-the-art approaches

for many such problems. Traditional NP Optimization problems constitute one of the most

typical battlefields of MAs, and a remarkable history of successes has been reported with

respect to the application of MAs to such problems. Combinatorial optimization problems (both

single-objective and multi-objective [12] [13] [14]) arising in scheduling, manufacturing,

telecommunications, and bioinformatics among other fields have been also satisfactorily tackled

with MAs [15].

MAs have been applied in a number of different areas and problem domains. It is now well

established that it is hard for a 'pure' Genetic Algorithm to 'fine tune' the search in complex

spaces. Researchers and practitioners have shown that a combination of global and local search

is almost always beneficial [16]. So MAs which are population-based Meta heuristic search

approaches have been receiving increasing attention in the recent years. Generally, MA may be

regarded as a marriage between a population-based global search and local improvement

procedures. It has shown to be successful for solving scheduling problems [17]. The basic steps

of a canonical MA for general nonlinear optimization based on the GA can be outlined in Figure

2.

Procedure: Canonical-MA

Begin

Initialize: Generate an initial GA population.

While (stopping conditions are not satisfied)

Evaluate all individuals in the population

For each individual in the population

Proceed with local improvement and replace the genotype and/or phenotype in the

population with the improved solution depending on Lamarckian or Baldwinian

learning.

End For

Apply standard GA operators to create a new population; i.e., crossover, mutation and

selection.

End While

End

Figure2. The canonical MA pseudo-code

3. THE PROPOSED APPROACH (JSFMA)

JSFMA is a three-stage approach. Shown in Figure 3, the flowchart of the JSFMA and the

components of it are described in the following.

3.1.Components of the first stage (Primary organization)

3.1.1. Parameter setting

Some parameters used in the JSFMA are chosen experimentally to get a satisfactory

solution in an acceptable time span. Through experimentation, parameters values were

chosen as follow:

Advanced Computing: An International Journal (ACIJ), Vol.3, No.6, November 2012

18

• Number of iterations: 150

• Maximum number of iterations per temperature: 10

• Crossover probability: 0.8

• Mutation probability: 0.01

Figure 3.The flowchart of the proposed approach

Advanced Computing: An International Journal (ACIJ), Vol.3, No.6, November 2012

19

Besides, each algorithm needs a large enough space to search an optimal solution. With regard

to the point that we aimed to test the proposed approach on the 20 different instances with

various sizes, considering a suitable search space could play an important role to find the

optimal solutions in an acceptable time. The greater the sub population size, the more

computation time. So analyzing the instances, we have considered the size of the entire

population, the size and the number of sub populations as follow to reduce the computation time

(without decreasing the quality).

• Size of the entire population: 204

• Size of each sub population: 34

• Number of sub populations: 6

3.1.2. Population initialization

In this approach, using a random way the whole population is created. A population

which will be partitioned into several subsets consists of a set of solutions, schedules.

3.1.3. Fitness evaluation

The task of optimization is determining the values of a set of parameters so that some

measure of optimality is satisfied, subject to certain constraints. This task is of great

importance to many professions [18]. The objectives usually considered in the JSSP are

the minimization of makespan, the minimization of tardiness, and the minimization of

mean flow time, etc [19]. In this paper, we have considered the JSSP with an objective

of minimizing makespan, a typical performance indicator for the JSSP. Makespan is

defined as the total time between the starting of the first operation and the ending of the

last operation in all jobs.

3.1.4. Sort population and Create Sub populations

In this part the solutions are sorted in a descending order according to their fitness. Then

the entire population is divided into m sub populations, each containing n solutions.

Finally, a process similar to Shuffled Frog Leaping algorithm (SFL) [20] is applied.

That is, the first solution goes to the first sub population, the second solution goes to the

second sub population, solution m goes to the mth sub population, and solution m+1

goes back to the first sub population, etc. These sub populations are of equal size and

their boundary is closed. Of course, they can cooperate with each other in the third

stage.

3.2. Components of the second stage (Evolution)

3.2.1. Selection

The selection phase is in charge to choose the better individuals for the crossover. In this paper

the Roulette wheel selection method [21] is adopted. In this method, the first step is to calculate

the cumulative fitness of the whole population through the sum of the fitness of all individuals.

After that, the probability of selection is calculated for each individual as shown Eq.1. Then, an

array is built containing cumulative probabilities of the individuals. So, n random numbers are

generated in the range 0 to ��� and for each random number an array element which can have a

higher value is searched for. Therefore, individuals are selected according to their probabilities

of selection [22].

Advanced Computing: An International Journal (ACIJ), Vol.3, No.6, November 2012

20

� ���� � �� ���	 (1)

3.2.2. Crossover

Crossover can be regarded as the backbone of genetic search. It intends to inherit nearly half of

the information of two parent solutions to one or more offspring solutions. Provided that the

parents keep different aspects of high quality solutions, crossover induces a good chance to find

still better offspring [23].

3.2.3. Mutation

For every string that advances to the mutation component, the Inversion Mutation (IVM) [24] is

used. It randomly selects a substring, removes it from the string and inserts it in a randomly

selected position. However, the substring is inserted in reversed order. Consider the string (1 2 3

4 5 6 7 8) and suppose that the substring (3 4 5) is chosen. Now this substring is inserted in

reversed order immediately after position 7 as shown in Figure 4 and gives (1 2 6 7 5 4 3 8)

[25].

Figure 4.Inversion Mutation (IVM)

3.2.4. Replacement

The population of crossover and mutation components, new population, and the old population

are sorted separately in an ascending order according to their fitness. Then using an elitist

method, the first half of the new population, the best of this population, are combined with the

first half of the old population, the best of the old population, to form the final population of the

current generation.

3.2.5. Local search through Simulated Annealing

The local search complements to the genetic part to keep the balance of the exploitation and

exploration is provided by Simulated Annealing. Simulated Annealing (SA) is motivated by an

analogy to annealing in solids. The idea of SA comes from a paper published by Metropolis et

al. in 1953 [26]. The algorithm in that paper simulated the cooling of material in a heat bath. In

1982, Kirkpatrick et al. [27] took the idea of the Metropolis algorithm and applied it to

optimization problems. The idea is to use the Simulated Annealing to search for feasible

solutions and converge to an optimal solution [28]. The SA optimization algorithm uses a

similar concept. The objective function is considered as a measure of the energy of the system

and this is maintained fixed for a certain number of iterations (a temperature cycle). In each of

the iterations, the parameters are changed to a nearby location in parameter space and the new

objective function value is calculated. If it decreases, the new state will be accepted. If it

increases, the new state will be accepted with a probability that follows a Boltzmann

distribution (the higher temperature means the higher probability of accepting the new state).

After a fixed number of iterations, the stopping criterion is checked. If it does not come time to

stop, the system's temperature will be reduced and the algorithm will continue. Simulated

Annealing is a stochastic algorithm that will guarantee to converge, if it runs for an infinite

number of iterations. It is one of the most robust global optimization algorithms, although it is

also one of the slowest [29].

Advanced Computing: An International Journal (ACIJ), Vol.3, No.6, November 2012

21

Figure 5 shows the Simulated Annealing algorithm [30]. In the Figure, the VALUE function

corresponds to the total energy of the atoms in the material, and T corresponds to the

temperature. The schedule determines the rate at which the temperature is lowered. Individual

moves in the state space correspond to random fluctuations due to thermal noise. One can prove

that if the temperature is lowered sufficiently slowly, the material will attain a lowest-energy

(perfectly ordered) configuration. This corresponds to the statement that if schedule lowers T

slowly enough, the algorithm will find a global optimum.

Function SIMULATED-ANNEALING (Problem, Schedule) returns a solution state

Inputs: Problem, a problem, Schedule, a mapping from time to temperature

Local Variables: Current, a node

 Next, a node

 T, a “temperature” controlling the probability of downward steps

Current= MAKE-NODE (INITIAL-STATE[Problem])

For t=1 to ∞ do

 T= Schedule(t)

 If T=0 then return Current

 Next= a randomly selected successor of Current

 ∆E=VALUE[Next]-VALUE[Current]

 If ∆E>0 then Current=Next

 Else Current=Next only with probability exp(-∆E/T)

Figure 5.The Simulated Annealing algorithm

The local search for all chromosomes or in all generations may cost much computation time. So

Ishibuchi et al. [31] proposed the following strategies:

• To apply local search to a sub set of the population selected based upon a given

probability P and on the fitness of the solutions according to preset criteria.

• To apply the local search procedure not after each generation but every T>1

generations.

It has been observed that applying the local search for a limited number of iterations enables

better results in the long run as reported in [32] for the maintenance scheduling problem. In the

case of which solutions should be applied to each group of operators, an approach that has been

used in the literature is to improve by the local search only a number of the best solutions in the

population [33]. In [34] authors implemented a first version of Memetic algorithm for the Flow

Shop Scheduling problem. They proposed not to examine the whole neighbourhood but only a

fraction of it (i.e. best of k instead of best of all) and stop the search when no better neighbour is

found after a small number of iterations. Later, they also proposed to apply local search to only

good offspring to improve the search ability of their genetic local search approach [35]. In this

paper, the best half of each sub population (based on fitness) is chosen to improve by local

search. And in every 10 generations, the local search procedure, SA, is run.

Advanced Computing: An International Journal (ACIJ), Vol.3, No.6, November 2012

22

3.3. Components of the third stage (Final organization)

3.3.1. Recreate Sub populations and Regrouping

In stage 2, each sub population was isolated and could not share its findings with the other sub

populations. In this stage using a process similar to stage 1, the population arrangement is done

again. That is, the solutions are sorted in a descending order according to their fitness. Then the

entire population is divided into m sub populations, each containing n solutions. Finally, a

process similar to the SFL is applied. That is, the first solution goes to the first sub population,

the second solution goes to the second sub population, population m goes to the mth sub

population, and solution m+1 goes back to the first sub population, etc.

4. Experimental results

The JSFMA was implemented in Matlab and the tests were run on a PC with Pentium IV 2.8

GHz processor and 2 GB memory. In order to give a rough idea about the quality achieved, we

confined to the 20 problems of the LA test problems, LA01-LA20, that were reported by

Lawrence in 1984 [36]. Applied instances of this data set consist of the problems with 10, 15 or

20 jobs, 5 or 10 machines, and 5 or 10 operations. The benchmark instances considered in the

experiments are summarized in Table 2. In the table, the first column shows the instance name

and the second one indicates the relevant reference.

Table 2.Benchmark instances

Table 3 summarizes the results of our experiment and compares them with the results of the

other literature considered. The contents of the table respectively include the test problem name

(INS), the number of jobs (J-no), the number of operations (O-no), the value of the best known

solution (BKS), the value of the best solution found by the proposed approach (JSFMA), the

relative deviation of this approach with respect to BKS (Dev%), and finally the values of the

best solution obtained by Gao et al. [19], Yang et al. [9], Park et al. [42], Nuijten [43], and

Coello [44] . The relative deviation is defined as Eq.2.

�� � �
�������
����
������ � � 100 (2)

Where, MKJSFMA is the makespan obtained by the proposed approach and MKBKS is the best

known makespan. Results show that in 80% of all cases, the bold numbers shown in column

JSFMA of Table 3, our approach could find the BKS successfully. The proposed approach

could gain the Best Known Solutions to LA01-LA20 with the exception of LA16, LA19, and

LA20. Figure 6 draws the makespan of JSFMA and the best known solution in comparison. As

shown in Table 4, in 17 out of 20 problems JSFMA could gain the same good results as the

literature. Information of the other specified papers is also shown in Table 4. In that table, the

first column refers to the criteria chosen to compare algorithms. The second column shows the

instances names the tests were run by them. The remaining columns refer to the values of the

Instance Reference

ft06-ft10- ft20 Muth and Thompson [37]

la01-la40 Lawrence [36]

abz5-abz9 Adams et al. [38]

orb01-orb10 Applegate and Cook [39]

swv01-swv20 Storer et al. [40]

yn1-yn4 Yamada and Nakano [41]

Advanced Computing: An International Journal (ACIJ), Vol.3, No.6, November 2012

23

proposed approach and the other papers. To show the proposed approach efficiency, average

relative deviations of the JSFMA with respect to the several papers are calculated and shown in

Table 5.

Table 3.Experimental results

INS J-no O-no BKS JSFMA
Dev

(%)

Gao

[19]

Yang

[9]

Park

[42]

Nuijten[

43]

Coello

[44]

La01 10 5 666 666 0 666 666 666 666 666

La02 10 5 655 655 0 655 655 666 666 655

La03 10 5 597 597 0 597 597 597 597 597

La04 10 5 590 590 0 590 590 590 590 590

La05 10 5 593 593 0 593 593 593 593 593

La06 15 5 926 926 0 926 926 926 926 926

La07 15 5 890 890 0 890 890 890 890 890

La08 15 5 863 863 0 863 863 863 863 863

La09 15 5 951 951 0 951 951 951 951 951

La10 15 5 958 958 0 958 958 958 958 958

La11 20 5 1222 1222 0 1222 1222 1222 1222 1222

La12 20 5 1039 1039 0 1039 1039 1039 1039 1039

La13 20 5 1150 1150 0 1150 1150 1150 1150 1150

La14 20 5 1292 1292 0 1292 1292 1292 1292 1292

La15 20 5 1207 1207 0 1207 1207 1207 1207 1207

La16 10 10 945 956 -1.16 945 945 977 977 945

La17 10 10 784 784 0 784 784 787 787 785

La18 10 10 848 848 0 848 848 848 848 848

La19 10 10 842 868 -3.09 842 844 857 848 848

La20 10 10 902 907 -0.55 902 907 910 907 907

Average Dev -4.8

Figure 6.The comparison between the makespan of JSFMA and BKS (Best Known Solution)

Advanced Computing: An International Journal (ACIJ), Vol.3, No.6, November 2012

24

Table 4.The comparison between the proposed approach and the other papers

Criteria Instance name JSFMA Gao

[19]

Yang

[9]

Park

[42]

Coello

[44]

Nuijten

[43]

#BM LA01-La20 0 0 0 0 0 0

#SM 17 20 18 15 17 15

#WM 3 0 2 5 3 5

The #BM indicates the number of solutions with the better makespan rather than BKS.

The #SM indicates the number of solutions equal to BKS.

The #WM indicates the number of solutions with the worst makespan rather than BKS.

Table5. Average relative deviation of JSFMA with respect to other papers

Instance Name Literature Average DEV%

LA01-LA20 Gao [19] -4.81

Yang [9] -4.01

Park [42] 3.23

Coello [44] 1.82

Nuijten [43] -3.40

4. CONCLUSION

The JSSP belongs to the NP-hard family of problems and still the optimal solution for all test

problems could not be found by the proposed algorithms. Over the last decades a good amount

of research has been reported aiming to solve JSSP by means of different algorithms. One of the

algorithms used to solve JSSP is the Memetic Algorithm. This effective algorithm keeps the

balance of exploration and exploitation.

In this paper, a three-stage multi population based hybrid approach, JSFMA, is proposed to

solve JSSP. In fact, we seek solutions to the Job Shop Scheduling Problem by means of a

Memetic Algorithm that combines a Genetic Algorithm with a Simulated Annealing based local

search. To find solutions three stages are considered. In the first stage parameters setting and the

population initialization are done. Then the population is divided into several groups using the

SFLA, Shuffled Frog Leaping Algorithm, method. In the second stage the Memetic Algorithm

is applied. In the last stage the groups are combined and using SFLA method re-grouping

operation is done. In this way the individuals can migrate to other groups. The approach is

compared with several algorithms proposed in the literature and the tests are done on a set of 20

standard instances from the Lawrence’s dataset. The computational results show that SFLMA

can find the Best Known Solution in 80% of the instances, LA01-LA20.

REFERENCES

[1] Zhang, G. & Gao, L & Shi, Y. (2008) “A genetic algorithm and taboo search for solving

flexible job shop schedules”, in proc. computational intelligence and design

International symposium, pp369-372.

[2] Giovanni, L. D. & Pezzella, F. (2010) “An improved genetic algorithm for the

distributed and flexible job shop scheduling problem”, European journal of operational

research, Vol. 200, pp395-408.

[3] Muth, J. F. & Thompson, G. (1963) “Industrial Scheduling”, Prentice Hall, Englewood

Cliffs, New Jersey, pp225-251.

Advanced Computing: An International Journal (ACIJ), Vol.3, No.6, November 2012

25

[4] Fang, H. & Ross, P. & Corne, D. (1993) “A promising genetic algorithm approach to:

job shop scheduling, rescheduling and open shop scheduling problems”, fifth

international conference on genetic algorithms, pp375-382.

[5] Brucker, P. & Schile, R. (1990) “Job-shop scheduling with multi-purpose machines,

Computing, Vol. 45, No. 4, pp369-375.

[6] Huang, W.Q. & Yin, A. H. (2004) “An improved shifting bottleneck procedure for the

job shop scheduling problem”, Computers & Operations Research, Vol. 31, pp2093–

2110.

[7] Chen, H. X. & Luh, P. B. (2003) “An alternative framework to Lagrangian relaxation

approach for job shop scheduling”, European Journal of Operational Research, Vol.

149, pp499–512.

[8] Nowicki, E. & Smutnicki, C. (1996) “A fast taboo search algorithm for the job shop

problem”, Management Science, Vol. 42, pp797–813.

[9] Yang, J. & Sun, L. & Lee, H. & Qian, Y. & Liang, Y. (2008) “Clonal Selection Based

Memetic Algorithm for Job Shop Scheduling Problems”, Journal of Bionic

Engineering, Vol. 5, pp111-119.

[10] Moscato P. (1989) “On genetic crossover operators for relative order preservation”,

C3P Report 778, California Institute of Technology, Pasadena, CA 91125

[11] Dawkin, R. (1976) the Selfish Gene, Clarendon Press, Oxford.

[12] Ishibuchi, H. & Narukawa, K. (2004) “Some issues on the of implementation of local

search in evolutionary Multi-objective optimization”, Lecture Notes in Computer

Science, Vol. 3102, pp1246-1258

[13] Jaszkiewicz, A. (2004) “A comparative study of multiple-objective meta-heuristics on

the bi-objective set Covering problem and the pareto memetic algorithm”, Operations

Research, Vol. 131, No. 1-4, pp135-158

[14] Knowles, J.D. & Corne, D.W. (2000) “M-paes: a memetic algorithm for multi-

objective optimization”, in the 2000 congress on Evolutionary Computation, San Diego,

USA, pp325-332

[15] Moscato, P. & Cotta, C. (2005) “Memetic algorithms”, University of Newcastle,

 Australia

[16] Krasnogor N. & smith J. (2000) “a memetic algorithm with self adaptive local search:

TSP as a case study”, In Proceedings of the Genetic and Evolutionary Computation

Conference (GECCO-2000), Morgan Kaufmann, San Francisco, USA, pp987-994.

[17] Ong, Y. & Lim, M. & Zhu, N. & Wong, K. (2006) “Classification of adaptive Memetic

algorithms: A comparative study”, IEEE transactions on systems, man, and

cybernetics—part b: cybernetics, Vol. 36, No. 1, pp141-152.

[18] Bergh, F. (2001) “An analysis of particle swarm optimizers”, university of Pretoria.

[19] Gao, L. & Zhang, G. & Zhange, L. & Li, X. (2011) “an efficient memetic algorithm for

solving the job shop scheduling problem”, Computers & Industrial Engineering, Vol.

60, pp699–705.

[20] Elbeltagi, E. & hegazy, T. & Grierson, D. (2005) “comparison among five evolutionary-

based optimization algorithms”, Advanced Engineering Informatics, pp43-53.

[21] Holland, J.H (1992) “Adaptation in Natural and Artificial Systems”, 2nd Ed, MIT Press

Advanced Computing: An International Journal (ACIJ), Vol.3, No.6, November 2012

26

[22] Sivaraj, R. & Ravichandran, T. (2011) “A review of selection methods in Genetic

algorithm”, International journal of engineering science and technology, Vol. 3, No. 5,

pp3792-3797

[23] Bierwirth, C. (1995) “A generalized permutation approach to job shop scheduling with

genetic algorithms”, OR Spectrum, pp1787-1792.

[24] Fogel, D. (1993) “applying evolutionary programming to selected traveling salesman

problems”, Cybernetics and systems, Vol. 24, pp27-36

[25] Larranaga, P. & Kuijpers, C.M.H. & Murga, R.H. and Dizdarevic, S. (1999) “genetic

algorithms for the travelling salesman problem: a review of representations and

operators”, Artificial Intelligence Review, Vol. 13, pp. 129-170.

[26] Metropolis, N. & Rosenbluth, A. W. & Rosenbluth, M. N. & Teller, A. & Teller, E.

(1953) “Equation of State Calculation by Fast Computing Machines”, Journal of Chem.

Phys, Vol. 21, pp1087-1091.

[27] Kirkpatrick, S. & Gelatt, C. D. & Vecchi, M. P. (1983) “Optimization by Simulated

Annealing”, Science, Vol. 220, pp671-680

[28] Kendall G, “http://www.cs.nott.ac.uk/ ~gxk/aim/notes/simulatedannealing.doc”

[29] COPASI development team (2009) “http://www.copasi.org”

[30] Russell, S. & Norvig, P. (1995) “Artificial Intelligence: A Modern Approach”, Prentice

Hall, pp113-114.

[31] Ishibuchi, H. & Murata, T. & Yoshida,T. (2003) “Balance between genetic search and

local search in Memetic algorithms for multi objective permutation flow shop

scheduling”, IEEE transactions on evolutionary computation, Vol. 7, No. 2, pp204-223

[32] Bruke, E. & Smith, A. (1999) “a memetic algorithm to schedule planned maintenance

for the national grid”, ACM Journal of experimental algorithmics, Vol. 4, No. 1,

pp1084-1096

[33] Burke, E. K. & Landa Silva, J. D. (2004) “The Design of Memetic Algorithms for

Scheduling and Timetabling Problems”, Krasnogor N., Hart W., Smith J. (eds.), Recent

Advances in Memetic Algorithms, Studies in Fuzziness and Soft Computing, Springer,

vol. 166, pp289 – 312.

[34] Ishibuchi, H. & Murata, T. & Tomioka, S. (1997) “effectiveness of genetic local

searchalgorithms”, proceedings of the seventh international conference on genetic

algorithms, pp505-512.

[35] Ishibuchi, H. & Yoshida, T. & Murata, T. (2002) “selection of initial solutions for local

search in multiobjective genetic local search”, proceeding of the 2002 congress on

evolutionary computation (CEC 2002), pp950-955.

[36] Lawrence, S. (1984) “Supplement to resource constrained project scheduling: An

experimental investigation of heuristic scheduling techniques”, Pittsburgh, PA: GSIA,

Carnegie Mellon University.

[37] Muth, J. F. & Thompson, G. L.(1963) Industrial Scheduling, Prentice Hall, Englewood

Cliffs, New Jersey, pp. 225-251

[38] Adams, J. & Balas, E. & Zawack, D. (1988) “The shifting bottleneck procedure for job

shop scheduling”, Management Science, Vol. 34, pp391-401

[39] Applegate, D. & Cook, W. (1991) “A computational study of the job-shop scheduling

instance”, ORSA Journal on Computing, Vol. 3, pp149-156

Advanced Computing: An International Journal (ACIJ), Vol.3, No.6, November 2012

27

[40] Storer, R.H. & Wu, S.D. & Vaccari, R. (1992) “New search spaces for sequencing

instances with application to job shop scheduling”, Management Science, Vol. 38,

pp1495-1509

[41] Yamada, T. & Nakano, R. (1992) “A genetic algorithm applicable to large-scale job-

shop instances”, North-Holland, Amsterdam, pp281-290

[42] Park, B. J. & Choi, H. R. & Kim, H. S. (2003) “A hybrid genetic algorithm for the job

shop scheduling problems”, Journal of Computers & Industrial Engineering, Vol. 45,

No. 4, pp597–613.

[43] Nuijten, W.P.W. & Aarts, E. H. L. (1996) “computational study of constraint

satisfaction for multiple capacitated job shop scheduling”, European journal of

operational research, Vol. 90, pp269-284

[44] Coello, C. A. C. & Rivera, D. C. & Cortes, N. C. (2003) “use of an artificial immune

system for job shop scheduling”, lecture notes in computer science, Vol. 2787, pp1-10

