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ABSTRACT 
 
Refactoring is applied to the software artifacts so as to improve its internal structure, while preserving its 
external behavior. Refactoring is an uncertain process and it is difficult to give some units for 
measurement. The amount to refactoring that can be applied to the source-code depends upon the skills of 
the developer. In this research, we have perceived refactoring as a quantified object on an ordinal scale of 
measurement. We have a proposed a model for determining the degree of refactoring opportunities in the 
given source-code. The model is applied on the three projects collected from a company. UML diagrams 
are drawn for each project. The values for source-code metrics, that are useful in determining the quality of 
code, are calculated for each UML of the projects. Based on the nominal values of metrics, each relevant 
UML is represented on an ordinal scale.  A machine learning tool, weka, is used to analyze the dataset, 
imported in the form of arff file, produced by the three projects.  
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1. INTRODUCTION 
 
Refactoring means to re-influence, something that already exists [1]. Whenever we make a 
change in the code, we are refactoring the software. Refactoring was introduced by W.F. Opdyke 
in his dissertation and the further studies were carried out by other researchers. Polymorphism has 
some similar properties as refactoring. We apply polymorphism to re-use the given statement for 
performing different functions. Thus polymorphism re-influences the already existing code. 
Refactoring is also done so as to make the software reusable. Refactoring is done to simplify 
complicated methods. A major challenge while refactoring the code is to preserve the external 
behavior of the software [2]. It is important to run a test suite before as well as after applying 
refactoring to check whether the original behavior of the software is maintained. Sometimes a 
small change in the source-code can alter the original behavior of the software. A very small 
change to a software system is much more prone to error than larger changes, because people tend 
to take very small changes less seriously.  
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The process of refactoring is uncertain and imprecise. The number of refactoring that can be 
applied to the software depends upon the dexterity of the developer. Integrated Development 
Environments (IDE’s) such as Eclipse 3.5, NetBeans 6.7, IntelliJ IDEA 8.1, Visual Studio 2008, 
and Refactor! Pro 2.5, etc offer support for refactoring [3]. Refactoring by hand has long been 
assumed to be error-prone. In order to help developers perform efficient and correct refactoring, 
various refactoring tools have been developed. These tools promise to help developers refactor 
faster and with a smaller probability of introducing defects. Despite the wide availability, 
refactoring tools are underused; according to two case studies, about 90% of refactorings are 
performed by hand [4]. To address this issue, [5] conducted a formative study of developers’ 
manual refactoring process, suggesting that developers’ reliance on “chasing error messages” 
when manually refactoring is an error-prone manual refactoring strategy. Additionally, their study 
distilled a set of manual refactoring workflow patterns. Using these patterns, they designed a 
novel refactoring tool called BeneFactor. The IDE’s determine which refactoring/s is/are 
applicable based on the selection of a code fragment by the developer. We have used 3 projects 
collected from a company to study the proposed model. The evaluation of this research work is 
done in four parts. In the first part, the UML diagrams are drawn for the three projects and the 
values of source-code metrics are calculated for each UML diagram. In the second step, based on 
the values of metrics, UMLs are represented on an ordinal scale of measurement. In The third 
step, statistical analysis of the dataset, produced in the previous step, is done based on the Naive 
Bayes algorithm with the help of a machine learning tool ‘weka’. In the last part of the research, 
the results obtained through statistical analysis are discussed for acceptance or rejection of the 
refactoring opportunities. 
 
2. RELATED WORK 
 
Nikolaos and Alexander in [3] have proposed a technique that extracts refactoring suggestions 
introducing polymorphism. Polymorphism is one of the most important features offered by 
object-oriented programming languages, since it allows to extend or modify the behavior of a 
class without altering its source code, in accordance to the Open/Closed Principle. They have 
evaluated the technique by comparing the refactoring opportunities, identified by independent 
experts, by following the precision and recall approach. 
 
O’Keeffe and Ó Cinnéide [6] proposed a search-based approach for improving the design of 
object- oriented programs without altering their behavior. They formulated the task of design 
improvement as a search problem in the space of alternative designs. The quality evaluation 
functions used to rank the alternative designs were based on metrics from the QMOOD 
hierarchical design quality model. The refactorings used by the search techniques to move 
through the space of alternative designs were inheritance-related (Push Down Field/Method, Pull 
Up Field/Method, Extract/Collapse Hierarchy, Replace Inheritance with Delegation, Replace 
Delegation with Inheritance and many others). Their approach has been validated by two case 
studies, in which the results of the employed search techniques (Hill Climbing and Simulated 
Annealing) and evaluation functions have been compared.  
 
Refactorings, behavior preserving transformations, are claimed to make software easier to 
understand and to improve software design. Bart Du Bois have validated this quality 
improvement through his dissertation [7]. He has done it by comparing two reengineering 
patterns that use refactoring to support program comprehension. The results were studied by 
formal analysis of the refactoring that improves coupling and cohesion metrics. The results of this 
research confirm that, indeed, the claimed benefits can occur, and describe how and when the 
application of refactoring can improve selected quality characteristics. 
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In the research paper [8], by Gabriele Bavota, Andrea Di Lucia and Rocco Oliveto, propose an 
Extract Class refactoring method based on graph theory that exploits structural and semantic 
relationships between methods. The empirical evaluation of the proposed approach highlighted 
the benefits provided by the combination of semantic and structural measures and the potential 
usefulness of the proposed method as a feature for software development environments. 
 
The selection of the best classification algorithm for a given dataset is a very widespread 
problem. It is also a complex one, in the sense it requires to make several important 
methodological choices. A paper [9] by Vincent Labatut and Hocine Cherifi has focussed on the 
measure used to assess the classification performance and rank the algorithms. 
 
3. MODEL FOR IDENTIFYING DEGREE OF REFACTORING OPPORTUNITIES 
 
A refactoring opportunity is a set of circumstances that makes it possible to refactor the software, 
while preserving its original behavior. Refactoring is studied as a process to improve the quality 
of the code in terms of maintainability, reusability and modifiability. But still, refactoring has no 
units for measurement. It is difficult to determine whether the process of refactoring has improved 
or decayed the code. We have thereby proposed a model for refactoring in which we have studied 
refactoring as a measured phenomenon.  
 
Since, software metrics are useful in determining the quality of the software; we have used some 
of the object-oriented software metrics based on the principles of abstraction, encapsulation, 
inheritance and information hiding. The nominal values of metrics are determined and the values 
of source code metrics are calculated from the UML diagrams of the given code. An ordinal scale 
of measurement of rank three is proposed.  
 
3.1. Structural Elements of Refactoring Model 
 
3.1.1. Software Metrics 
 
Software metrics are essential to software engineering for measuring software complexity and 
quality, estimating cost and project effort. The contribution of software metrics towards quality of 
the software is in general recognized by many software engineering communities [10]. The 
software metrics [11], [12] used in this research work and their evaluation are defined below: 
 
1) Number of Methods (NOM): This is a simple count of the number of operations. Its value 
should remain between 3 and 7. 
 
2) Number of Methods Inherited (NMI): It is computed using the below given formula: 

*100NOHONMI
HOP

  

Table 1: Variable Definition for Number of Methods Inherited 
 

The Variable... Represents the…  
NOHO number of non-redefined 

inherited operations 
HOP number of inherited operations 

 
3) Number of Methods Overridden (NMO): This is the count of the number of inherited 
operations that are redefined by the class (Between 0 and 5). A class which inherits services must 
use them with a minimum of modifications.  If this is not the case, the inheritance loses all 
meaning and becomes a source of confusion. 
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4) Depth of Inheritance Tree (DIT): This metric provides the position of the class in the 
inheritance tree. For multiple inheritance, this metric provides the maximum length path. A value 
of between 0 and 4 respects the compromise between high performance power and complexity 
introduced due to inheritance. 
 
5) Number of Children (NOC): The number of child classes. It should be limited (Between 1 and 
4), notably for reasons of simplicity [13]. 
 
6) Number of Attributes (NOA): This is a simple count of the number of attributes, nominally 
between 2 and 5. A high number of attributes (> 10) probably indicates poor design.  
 
7) Specialization Index (SIX): For a root class, the specialization indicator is zero. For a class, the 
specialization indicator is obtained through the following equation, where a definition of NMO is 
Number of Methods Overridden, NMI is Number of Methods Inherited, NMA is Number of 
Methods Added, and DIT is Depth of Inheritance Tree: 
 

* *100NMO DITSIX
NMO NMI NMA

     
 

 
8) Coupling between Object Classes (CBO): The variable NumberOfLinks represent the number 
of classes used as associations in all classes. CBO (nominally between 1 and 4) is evaluated as: 
 

NumberOfLinksCBO
NumberOfClasses

  

9) Abstraction (A): The Abstraction metric measures a package's abstraction rate. It is computed 
as: 

* *100Nma NcaAbstraction
Nmca Nc

  

The variables Nma, Nmca, Nca and Nc represent the number of abstract operations in all classes, 
total operations in the abstract classes, number of abstract classes and number of classes(abstract 
or not) respectively. 
 
10) Distance from Main Sequence (DMS): DMS, the balance between abstraction and instability 
is obtained through the following expression: 
 

| 100 |DMS Abstraction Instability    

11) Cyclomatic Complexity (CC): It measures the complexity of a module's decision structure. It 
is denoted as V(G). Nominal range of CC is below 20. It is computed as count of linearly 
independent paths through a method or methods. 
 

( )V G E N P    

Table 2: Variable Definition for Cyclomatic Complexity 
 

The Variable… Represents the… 
E Number of edges of decision graph 
N Number of nodes of decision graph 
P Number of connected paths 
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12) Class Category Relational Cohesion (CCRC): This metric measures the rate of cohesion 
between a package's classes. Its nominal range is between 150% and 350%. CCRC  is calculated 
using the given equation where NumberOfLinks = number of associations and generalizations, 
and NumberOfClasses = total number of classes: 
 

NumberOfLinksCCRC
NumberOfClasses

  

3.1.2 Ordinal Scale 
 
With ordinal measurement scales there is relative ranking and ordering of an attribute in different 
categories [14]. The ordinal scale has two properties: Identity (unique meaning) and Magnitude 
(relationship). It is critical to choose a correct measurement scale to analyze our data, as it should 
have correct scale/statistic combination. That is, we must use a high powered statistic on a high 
powered set of data. 
 
3.2. Evaluation of Model 
 
The refactoring model is evaluated with the help of an ordinal scale of rank 3. At each level of an 
ordinal scale, different set of opportunities are available for refactoring the code. We have 
determined the relevant opportunities for refactoring at the three levels of ordinal scale: 
 
1. Low Degree of Refactoring Opportunities: When the values of software metrics lie within the 
nominal range of values, we determine it as a good quality code and thus, low refactoring 
opportunities. On an ordinal scale, it is represented as “Level 0”. According to KentBeck [15], 
one should let the code do the talking and listen to what it says; one will realize how much 
refactoring is needed on any given iteration. 
 
2. Medium Degree of Refactoring Opportunities: When the values of source-code metrics lie on 
the edges of nominal range of metrics, we determine it as medium level opportunities for 
refactoring. On an ordinal scale, it is represented as “Level 1”. 
 
3. High Degree of Refactoring Opportunities: When the values of source-code metrics are far 
from their nominal values, we determine it as a high degree of refactoring opportunities. On an 
ordinal scale, it is represented as “Level 2”. Refactoring precedes a program modification or 
extension, bringing the program into a form better suited for the modification [16]. 
 
The proposed model is evaluated in the four steps: 
 
Step 1: Identify the projects and draw UML diagrams for each project. 
Step 2: Calculate the values of identified object-oriented source-code metrics. 
Step 3: Represent each UML on an ordinal scale of measurement. 
Step 4: Statistical Analysis of the dataset produced in the previous step. 
 
In this research work, we have applied the proposed model to the three projects, collected from a 
company Ecologic Corporation. The object-oriented source code metrics, defined in the previous 
section, are calculated from the UML diagrams drawn for each project. The project details are 
given the Table 3. 
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Table 3: Project Details 
 

Project. Project Name Number of 
UML diagrams 

1. ABC CORP 144 
2. Sharma Publishers 109 
3. Friends Sales Corporation 262 

 
Based on the values of source-code metrics, each UML is represented on an ordinal scale for 
measurement. The dataset, thus produced, is analyzed with the help of a Naïve Bayesian 
Classifier. The various result metrics are used to determine the performance of the model. 
 
3.3. Performance Analysis of the Refactoring Model 
 
A machine learning tool, weka (Waikato Environment for Knowledge Analysis), is used to carry 
out the statistical analysis of the dataset of each project. The weka code is written in Java and is 
supported by Windows, Linux and MAC OS X platforms. The data, in this research, is imported 
in the form of ARFF file. The Naïve Bayesian Classifier is used for analyzing the data. The naïve 
Bayesian classifier provides a simple approach, with clear semantics, to represent, use and learn 
the probabilistic knowledge [17]. The algorithm is designed to minimize processing time and 
efficiently select the attributes that have the greatest importance; however, we can control the data 
that is used by the algorithm. The Microsoft Naive Bayes algorithm supports several attributes 
that affect the behavior, performance, and accuracy of the resulting model. The algorithm 
calculates the probability of every state of each input column, given each possible state of the 
predictable column [18]. The outputs are drawn from the confusion matrix obtained by the 
classifier. A confusion matrix [19] contains information about actual and predicted classifications 
done by a classification system. Performance of such systems is commonly evaluated using the 
data in the matrix. The 3x3 classification problems of the three projects are drawn in the Tables 4, 
5, and 6 below: 
 

Table 4: 3x3 Classification of ABC CORP 
 

a b c  Classified as 

266 75 58 | a=0 
91 147 44 | b=1 
65 39 115 | c=2 

 

Table 5: 3x3 Classification of Sharma Publishers 
 

a b c  Classified as 
291 69 33 | a=0 
79 183 38 | b=1 
44 66 97 | c=2 

 
Table 6: 3x3 Classification of Friends Sales Corporation 

 
a b c  Classified as 
418 101 24 | a=0 
114 295 33 | b=1 
45 55 115 | c=2 
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The transformation of 3x3 classifications of the projects into 2x2 confusion matrix is done as 
specified in [19]. The Table 7, 8, and 9 shows the classification of the three projects at three 
levels 0, 1, and 2 separately. The true positives and false positives are obtained from the 
confusion matrix, which are then used to calculate the result metrics. The result metrics of the 
different projects are then compared to find out the opportunities for refactoring of the projects. 

 
Table 7: 2x2 Confusion Matrix for ABC CORP 

 
 a Not a  b Not b  c Not c 

a 266 133 b 147 135 c 115 102 

Not a 156 345 Not b 114 504 Not c 104 579 

 
Table 8: 2x2 Confusion Matrix for Sharma Publishers 

 
 a Not a  b Not b  c Not c 

a 291 102 b 183 117 c 97 71 

Not a 123 384 Not b 135 465 Not c 110 622 

 
Table 9: 2x2 Confusion Matrix for Friends Sales Corporation 

 
 a Not a  b Not b  c Not c 

a 418 125 b 295 147 c 115 57 

Not a 159 498 Not b 156 602 Not c 100 928 

 
3.3.1 Kappa Statistic 
 
Kappa is a measure of agreement with desirable properties. It is used for statistical measurement 
for qualitative objects. Kappa statistics measure levels of agreement between two observers and 
make allowance for the degree of agreement that would occur by chance alone [20]. It's 
calculated by taking the agreement expected by chance away from the observed agreement and 
dividing by the maximum possible agreement. The comparison of Kappa for three projects is 
shown in Figure 1.  
 



Advanced Computing: An International Journal ( ACIJ ), Vol.4, No.3, May 2013 
 

24 
 

 
 

Figure 1: Comparison based on Kappa Statistic 
 
From Figure 1, it is clear that value of kappa for Project Friends Sales Corp (=0.4986) is 
maximum, which indicates that this project has a good quality code, thus there are less 
opportunities for refactoring. Similarly, kappa for project ABC Corp is minimum (= 0.3568) and 
has the maximum refactoring opportunities to make the code better. While, Sharma Publishers (= 
0.4274) has moderate refactoring opportunities. 
 
3.3.2 Mean Absolute Error and Root Mean Squared Error 
 
The Mean Absolute Error (MAE) measures the average magnitude of the errors in a set of data, 
without considering their direction. It measures accuracy for continuous variables. The MAE is a 
linear score which means that all the individual differences are weighted equally in the average. 
 

( tan )
tan

Sum AbsoluteErrorPerIns ceMeanAbsoluteError
NumberOfIns ces

  

The standard deviation of the errors, also called Root Mean Square Error (RMSE), is the measure 
of typically spread of data over the regression line. The RMSE is a quadratic scoring rule which 
measures the average magnitude of the error. The difference between predicted and 
corresponding observed values are each squared and then averaged over the sample. Finally, the 
square root of the average is taken.  
 
Since the errors are squared before they are averaged, the RMSE gives a relatively high weight to 
large errors. This means the RMSE is most useful when large errors are particularly undesirable. 
For each instance in the test set, weka obtains a distribution. The distribution of mean errors for 
the three projects is drawn with the help of a bar graph in Figure 2. 
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Figure 2: Comparison based on Mean Absolute Error and Root Mean Squared Error 
 
From the Figure 2, it can be noted that value of MAE and RMSE are maximum for ABC CORP 
(thus, it has maximum opportunities for refactoring), while minimum for Friends Sales Corp 
(thus, it has minimum refactoring opportunities). 
 
3.3.3 F-Measure 
 
The F-Measure is simply a combined measure for precision and recall, given by: 
 

2*Pr *Re
Pr Re

ecision callF Measure
ecision call

 


 

The precision is the fraction of retrieved instances that are relevant, while Recall is the fraction of 
relevant instances that are retrieved. Both precision and recall are therefore based on an 
understanding and measure of relevance. The Precision and Recall are calculated using the 
equations: 
 

Pr NumberOfTruePositivesecision
NumberofTruePositives FalsePositives




, Re TruePositivescall
TruePositives FalseNegatives




 

The F-measure corresponds to the harmonic mean of Predicted Positive Value (PPV) and True 
Positive Rate (TPR), therefore it is class-specific and symmetric. It is also known as Sørensen’s 
similarity coefficient, Dice’s coincidence index and Hellden’s mean accuracy index [9]: 

2( 1* 1)F1
1 1

2*
2

PPV TPR
PPV TPR

TruePositives
TruePositives FalseNegatives FalsePositives





 
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Figure 3: Comparison based on F-Measure 
 
The comparison of three projects, based on the value of f-measure is drawn with the help of a bar 
graph, as shown in Figure 3. The values of f-measure are calculated at the three levels of 
refactoring (high, medium, and low). Each project is studied for refactoring at three levels of 
ordinal scale. A project with highest f-measure has high precision and recall (which means, high 
accuracy), thus lowest refactoring opportunities. 
 

From the figure 3, it can be noted that at low level of refactoring opportunities; Friends Sales 
Corp has highest value of f-measure; Sharma Publishers has the moderate value and ABC CORP 
has lowest value. It can be interpreted that Friends Sales Corp has minimum refactoring 
opportunities. Same trend is followed at medium level opportunities. While, at high level of 
refactoring opportunities, where minimum value of f-measure supports high degree of refactoring 
opportunities, it can be interpreted that Sharma Publishes has high refactoring opportunities. 
 

3.3.4 Area under Receiver Operating Characteristics (AUC) 
 
The two values (TPR= true positive rate and FPR= false positive rate) are better visualized with 
the help of ROC Curve (Receiver Operating Characteristic). ROC analysis helps to diagnose 
cost/benefit analysis of decision making. The area under the ROC curve is a widely used measure 
of performance of supervised classification rules. AUC is a portion of the area of the unit square, 
its value will always be between 0 and 1.0 [21].  
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Figure 4: Comparison based on ROC Area 
 
The ROC area of the three projects, at three levels of refactoring opportunities, can be compared 
with the help of the bar graph drawn in Figure 4. The Project which has highest ROC area is said 
to have most positively predicted values. Thus, have the minimum refactoring opportunities. It 
can be interpreted from the Figure 4 that Friends Sales Corp has highest ROC area and ABC 
CORP has lowest ROC area. The ROC Curves can be drawn for each project (Figure 5). The 
project with best curve has best predicted values. 
 

 
 

Figure 5: ROC Curve for three Projects 
 
From the Figure 5, it can be interpreted that ROC curve is best for the Friends Sales Corporation, 
thus the classifier has given the best performance for this project. 
 
4. CONCLUSIONS 
 
In this research work, we have studied refactoring as a measured entity. The research is 
completed in four parts. In the first part, we have collected three projects from a company and 
UML diagrams are drawn for each project. In the second part, we have identified object-oriented 
source-code metrics, useful in determining quality of the software. Also, we have drawn an 
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ordinal scale of measurement at three levels of refactoring opportunities namely high, medium 
and low, represented as 0, 1, and 2 respectively. In the third part, we have represented each UML, 
based on the values of source-code metrics, on an ordinal scale. The dataset thus produced is 
analyzed using a Naive Bayes machine algorithm in the last part of research. A machine learning 
tool, weka, is used to analyze the data. The results (Kappa Statistic, Mean Absolute Error, Root 
Mean Squared Error, F-Measure, ROC Curve, and Area under ROC) are compared for each 
project to identify the project that has maximum and minimum refactoring opportunities. 
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