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ABSTRACT 

 
Nowadays  modern computer GPU (Graphic Processing Unit) became widely used to improve the 

performance of a computer, which is basically  for the GPU graphics calculations, are now used not only 

for the purposes of calculating the graphics but also for other application. In addition, Graphics 

Processing Unit (GPU) has high computation and low price. This device can be treat as an array of SIMD 

processor using CUDA software.  This paper talks about GPU application, CUDA memory and efficient 

CUDA memory using Reduction kernel. High-performance GPU application requires reuse of data inside 

the streaming multiprocessor (SM). The reason is that onboard global memory is simply not fast enough to 

meet the needs of all the streaming multiprocessor on the GPU. In addition, CUDA exposes the memory 

space within the SM and provides configurable caches to give the developer the greatest opportunity of 

data reuse. 
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1. INTRODUCTION 

 
GPU is the special processor that is in charge to relieve the main processor in a computer 

graphic of a computation. GPUs were originally created for a high-performance workstation and 

certainly the price is also very expensive [1,2]. In early 1990, 3D games with rendering processor 

were appearing, since then 3D accelerator Hardware was made [2,9]. API OpenGL was basically 

from a graphic application of professional workstation and adopted to make a graphic 3D game 

programming, the same as the emergence of the DirectX and Direct3D. In addition, GPU was 

becoming more affordable and more powerful than ever and the development of GPU was faster 

than the CPU development, this is because the encouragement of the Business gaming on PC [2].  

GPU continued evolving; GPU GeForce from NVIDIA appeared. In 2001, This GPU was 

the pioneer of the Shader programmable GPU. Shader was the data processing units in GPU. 

Generally, each GPU has more than one shader. During this period, the GPU can be programmed 

by aiming to increase the GPU works to process the data graphics in parallel [1,2]. On a modern 

GPU, shader number or often called the Stream Processor (for stream input and output/Stream), 

has reached the hundreds or even thousands. GPU calculation abilities can reach Terra FLOPS, 

the hundreds of times faster than the CPU. These capabilities were ready to be used to perform 

other calculations besides graphics calculations [5,6]. GPU Computing is on the growth in 

popularity and that makes the future very familiar [7,11]. The comparison of the GPU and the 

CPU is show in Table 1. 
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Table 1. Comparison between CPU and GPU 

CPU GPU 

Parallelism through time multiplexing Parallelism through space multiplexing 

Emphasis on low memory latency Emphasis on high memory throughput 

Allows wide rangeof control flows +  

control flow optimization 

Very control flow restricted 

Optimized for low latency access to caches  

data set 

Optimized for data parallel, throughput 

computation 

Very high clock speed Mid-tempo clock speed 

Peak computation capability low  Higher peak computation capability 

Off-chip bandwidth lower Higher off-chip bandwidth 

Handle sequential code well Requires massively parallel computing 

CPU are great for task parallelism GPU are great for data parallelism 

 

2. GPU 

 
GPU refer to Graphics Processing Unit and is a single chip processor used for 3D 

application. GPU functionality has traditionally beenvery limited. In fact, since long time ago the 

GPU just used to accelerate certain parts of the graphics pipeline [4,8]. The GPU is limited to 

independent vertices and fragments on the processing capacity. However, this processing can be 

improved in parallel using the multiple cores which is away now to available to the GPU. This is 

more effective when the programmer wants to process a lot of vertices or fragments in the similar 

way [9,14].  

 

It creates lighting effect and transforms objects every time when a 3D scene is redrawn. 

These are mathematically intensive tasks, and put quite a strain on the CPU. Free this burden 

from the CPU give some spaces for cycles that can be used for another task[1,6]. GPU produce 

not only high computational power but also with low costs. More transistors can be devoted to 

data computation rather than data caching and flow control as in the case of CPU. With multiple 

cores that control by very high memory bandwidth, nowadays GPU serve with incredible 

resources for both non-graphics processing and graphics processing at the same time[1,6]. 

 

3. CUDA 

 
At November 2006, NVDIA introduce CUDA, a general purpose computing platform and 

programming model that leverages the parallel compute engine in NVDIA GPUs to solve many 

complex computational problems in a more efficient way than on a CPU[3,5].Driven by the 

insatiable market demand for real-time, high-definition 3D graphics, the programmable Graphic 

Processing Unit or GPU has evolved into a highly parallel, multithread, many core processors 

with tremendous computational horsepower and very high memory bandwidth [3,4], as 

illustration on figure 1. 
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Figure 1. Memory Bandwidth of GPU and CPU 

3.1 Memory Hierarchy 

The CUDA threads can access trough the data from multiple memory spaces during their 

execution process. Every thread has its own private local memory. Every thread block has shared 

memory visible to every thread of the block and with the similar lifetime as the block. Every 

thread has the access to the same global memory [3]. There are another two additional read-only 

memory spaces that can be access by every of the threads; the texture memory and constant 

memory spaces. Every memory spaces include the global, constant and texture memory spaces 

are optimized for non-similar memory function [3, 5]. Texture memory in other ways offers the 

other different addressing modes, the same with data filtering, for some specific data formats. The 

memory spaces that consist of the global memory, constant, and texture memory space are 

persistent across kernel launching by using the same application [3, 5]. 

 

3.2 Architecture  

 
GPU is a massively parallel architecture; many problems can be efficiently solve using 

GPU computing. GPU have large among of arithmetic capability. They increase the amount of 

programmability in the pipeline[7,15,16]. 

 

Fig. 2. Show architecture of a typical CUDA-capable GPU. CUDA can be likely the array 

of streaming processors that is have capability of high level of threading. In Fig. 2, two SMs form 

a building block; moreover, the number of the Streaming Multiprocessing in a building block may 

be varying from one another generation of CUDA GPUs to another generation. In complexion, 

each Streaming Multiprocessing has a number of streaming processors (SPs) that share 

instruction cache and control logic. Every GPU currently already comes with up to 4 gigabytes of 

graphics double data rate (GDDR) DRAM, referring as the global memory. These RAMs of the 

GPU are non-similar with the CPU that they are functionally as frame buffer memories for 

rendering graphics. For graphics applications, they keep video images, and texture information 

for three-dimensional (3D) rendering, but for computing their function as very high bandwidth, 

off-chip memory with something that more latency than typical system memory. For massively 

parallel applications, the higher bandwidth made for the longer latency [7,15]. 
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Figure 2. GPU architecture 
 

4. CUDA Memory 

 
CUDA supports several types of memory that can be used by programmers to achieve 

high CGMA (Compute to Global Memory Access) ratios and thus high execution speeds in their 

kernels [4, 5]. Figure 3 shows this CUDA device memory. At the part of the figure 3, we can see 

the constant memory and global memory. These many types of memory can be read (R) and 

written (W) by the host, that using API functions. Register and shared memory are GPU on-chip 

memories. This Variable that reside in these memory types that access able at very high speed in 

high parallel manner [3].  

 
 

Figure 3. CUDA memory model 

 

In CUDA memory structure there are some memory in which each memory has duties 

and functions of each, Here are the types and characteristics of CUDA memory [3,4,5]. 
 

Table 2. Characteristics and Type of CUDA Memory 
 

Memory types position Caches Accessibility  Area 

Register On chip No W/R One thread 

Local On chip Yes W/R One thread 

Shared On chip N/A W/R All threads in block 

Global Off chip  Yes W/R All host+ threads 

Constant Off-chip Yes R All host+ threads 

Texture Off-chip Yes W/R All host+ threads 
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4.1 Register Memory 
 

The fastest memory on the GPU is the Register memory. Because they are only memory on the 

GPU with enough bandwidth and a low latency to deliver peak performance [4,5]. 
 

Each GF100 SM support 32 K 32 bit registers. The biggest number of registers that using by a 

CUDA kernel is 63, occur to the limited number of bits available for indexing in the register 

memory store. The number of ready able registers varies on a Fermi SM: 
 

a. If the SM running 1,536 thread, only registers can be used 

b. The number of available register degrades gracefully from 63 to 21 as the workload (and 

hence resource requirement) increases by number of thread. 
 

4.2 Local Memory 
 

The accesses of the Local memory occur for only some automatic variable. An automatic variable 

is launch in the device code with none of any of the __shared__, __device__, or __constant__ 

qualifier. Generally, an automatic variable reside in a register except for the following [4, 5]:  
 

a. Array that the compiler cannot be determine to be index with constant quantities. 

b. Large structure or array that would consume too much register space 

c. Every variable of the compiler decides to spill to local memory when a kernel using much 

more registers memory than are available on the SMs.  
 

4.3 Shared Memory 
 

Shared memory also as know as to smem, can be not only 16 KB but also 48 KB per SMs 

arranged in 32 banks that are 32 bits wide. This is different with early NVDIA documentation; 

shared memory is not fast enough like the register memory. Shared memory can be distribute in 

three different ways [4, 5]; 

a. In static number within the kernel or globally within the file that shows in the declaration 

in the sample code below, “A static Shared Memory declaration”: 

 

 

 

b. Dynamically within the kernel by the driver API function calling. 

c. Dynamically via the execution configuration. 

Only shared memory of the single block can be allocate by using the execution configuration. 

Used more than one dynamically allocated shared memory variable on the kernel need the 

manually generating offsets for every variable.   

 

4.4 Constant Memory 
 

For the compute 1.x device, using constant memory is an excellent way to store and broadcast 

read-only data to all the thread on the GPU. The constant cache is limited up to 64 KB. In 

addition, can be broadcast 32-bits per two clocks per warp per multiprocessor and suppose to be 

use when every thread in a warp read the same address. Moreover, the accesses will come 

serialize on compute 1.x device [4,5]. Higher devices and compute 2.0 allow developers to access 

global memory using the efficiency of constant memory when the compiler can use and recognize 

the LDU instruction. Specifically, the data must: 

 

a. Reside in the global memory 

b. Be read-only in the kernel (programmer can enforce using the const keyword). 

c. Not depend on the thread ID. 

__shared__ int_data[256;] 
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4.5 Texture Memory 
 

Texture are bound to global memory and can provide both cache and some limited 9-bits 

processing capabilities. How the global memory, which the texture binds to is allocateto dictate 

some of the capabilities the texture can provide. Due to this reason, it is important to distinguish 

between three kinds of memory types that can be bound to the texture memory (look at Table 3). 

For CUDA programmer, the most salient points about using texture memory [4,5]: 

 

a. Texture memory is generally used in visualization 

b. The cache improved for 2D spatial locality. 

c. It consist only 8 KB of cache per SMs. 

 
Table 3 The way Memory Was Create Defines the Texture memory Capability 

 
Type How build Capability Texture Update 

Linear  cudaMalloc() Acts as a linear cache If the incoherence is safe, 

Free to write to the global 

memory from threads. 

CUDA arrays cudaMallocArray(),

cudaMalloc3D() 
- Cache improved for spatial locality 

- Wrapping, Interpolation, and clamping 

It is not allows Writing to 

array from kernel. 

2D pitch  

Linear   

cudaMallocPitch() - Cache improved for spatial locality 

- Wrapping, Interpolation, and clamping 

If the incoherence is safe, 

Free to write to the global 

memory from threads. 

 

4.6 Global memory 
 

Understanding how to efficiently used global memory is an essential to becoming an adept 

CUDA programmer. Focusing on data reuse within the SM and cache avoids memory bandwidth 

limitations. There are three most important rules of high-performance GPU programming [4,5]. 

 

a. Take the data on the GPU and then keep it. 

b. Give GPU enough work to do. 

c. Concerning the data reuse within the GPU to avoid memory-limited bandwidth. 

 

For some part, it is impossible to keep off global memory, where in some case it is important to 

understand how to use the global memory efficiently. Especially the Fermi architecture made 

some important changing that CUDA programmers should think about and use the global 

memory efficiently. 

 

5. Efficient CUDA memory Using Reduction Kernel 
 

The importance of efficiently using memory in CUDA cannot be overstated. There are three 

orders of magnitude un similar speed between the fastest on-chip register memory and mapped 

host memory that should be traverse the PCIe bus, CUDA developers must have  understanding 

about the most efficient way to memory used[13,17]. 
 

Reduction operation perform common task such as finding the minimum, maximum, or sum of a 

vector. The thrust API provides a simple interface that hides all the complexity of reduction, 

making both flexible and easy to use. Thrush uses a reduction algorithm designed by Mark Harris 

[8]. 
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a. Reduction algorithm 1 
 

Single block parallel reduction

 

Value (shared memory) 

 

stride=2 

 

stride=4 

 

stride=8 

 

  

 Interleaved addressing with divergent branching

b. Reduction algorithm 2 

Replace the divergent branch with a 

c. Reduction algorithm 3 

Single block parallel reduction

Value (shared memory) 

 

stride=2 

 

 

 

stride=8 

   

Replace the stride loop with a reversed one.

stride=4 

if (tid%(2*stride)==0)sm[tid]+=sm[tid+stride];

Int index=2*stride*tid;

If (index<blockDim.x)

 Sm[index]+=sm[index+stride];

for (int stride=1;stride<blockDim.x;stride*=2) {

__syncthreads(); 

if (tid%(2*stride)==0)sm[tid

if (tid==0) d[blockIdx.x]=sm[0];

 } 
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Single block parallel reduction 

8 1 2 7 2 1 4 2 

9 1 9 7 3 1 6 2 

18 1 9 7 9 1 6 2 

27 1 9 7 9 1 6 2 

27 1 9 7 9 1 6 2 

Interleaved addressing with divergent branching 

 

Replace the divergent branch with a non-divergent one. 

 

Single block parallel reduction 

 8 1 2 7 2 1 4 2 

10 2 6 9 2 1 4 2 

27 11 6 9 2 1 4 2 

reversed one. 

16 11 6 9 2 1 4 2 

if (tid%(2*stride)==0)sm[tid]+=sm[tid+stride]; 

Int index=2*stride*tid; 

If (index<blockDim.x) 

Sm[index]+=sm[index+stride]; 

for (int stride=1;stride<blockDim.x;stride*=2) { 

if (tid%(2*stride)==0)sm[tid]=sm[tid+stride]; } 

if (tid==0) d[blockIdx.x]=sm[0]; 

2015 

 
7 
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Table 4. Comparison reduction algorithm 

Algorithm Speedup Time Bandwidth 

Algorithm 1 1 7.800 ms 4.18   GB/sec 

Algorithm 2 1.96 3.975 ms 8.41   GB/sec 

Algorithm 3 2.94 2.650 ms 12.43 GB/sec 

 

6. EXAMPLE OF EXPERIMENT  

 
In the example, research by Huang Jing-Jing entitle “Research and application of simulation for 

particle system based on GPU” [12]. In this research, he use shared memory to efficiencies the 

system and compare different strategies to choose the optimal strategy. 

 

 
Figure 4a. Simulation Computer A  Figure 4b. Simulation Computer B  

On simulation computer A and B, respectively, the optimized operation system 1500 steps, the 

kernel function is time-consuming. Observation two pictures in the curve, the curve of the initial 

value is very high, and then for a higher value in steady decline, until the basic stability. When 

program began to run, you need to allocate space and some initialization, so the curve of the 

initial value is higher.  

 

In this system using the Shared memory of the kernel function is hashsort() and findCellParticle(). 

Which hashsort() sorting process using CUDA cstd in the library of cudppSort() function, 

although have no function on the source code, but through CUDA profiler, still can analyze the 

function of the basic situation, first of all, this function is run on the GPU, and the function is 

executed, each block using the Shared memory with 4096 bit. In addition, when the function 

findCellParticle() is executed, each block using the Shared memory size of 1028 bit. 
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OpenGL

oneStep

update

nsearch

collision

Int index=2*stride*tid; 

If (index<blockDim.x) 

 Sm[index]=sm[index+stride]; 

 

Int index=2*stride*tid; 

If (index<blockDim.x) 

 Sm[index]+=sm[index+stride]; 
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Table 5. Before and after using Shared memory 

 OpenGL oneStep update Nsearch collision 

A：：：：shared memory 8.1610 22.4092 0.8873 4.4877 13.9956 

A：：：：No shared memory 8.1730 22.5342 0.8957 4.4553 13.9863 

B：：：：shared memory 6.1472 6.7001 0.6477 2.3902 2.5957 

B：：：：No shared memory 6.2896 6.8708 0.7013 2.4561 2.5835 

 

On the computer A and B respectively improved Nsearch kernel function execution speed 

0.0324 m/s and 0.1305 m/s.  After the test, it got the proven that using the Shared memory of 

Nsearch execution speed did not improve at all. 

 

7. CONCLUSION 

 
CUDA makes various hardware spaces available to the programmer. It is important that the 

CUDA programmer use the available memory space with the three orders of magnitude un 

similar in bandwidth between the kinds of CUDA memory types. Malfunction of usage of 

memory can result in low performance. CUDA defines shared memory, register, and constant 

memory that can be access at maximum speed and in parallel manner than global memory. Using 

memory effectively seems like require redesign of the algorithms, a popular technical strategy to 

maximize the locality of data access and enable effective use of shared memory. 

 

Moreover, it is the most essential think for CUDA programmers to be aware of the limited sizes 

of this type of CUDA memory, their capacities are implementing dependently. Once their 

capacities are exceed, they become limited factors for the number of thread that can be 

simultaneously executing in each SM. The application must exhibit locality in data access in 

order to make efficient use of high-speed memory in the system operation. 
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