
International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol.1, No.4, August 2011

DOI : 10.5121/ijcsea.2011.1404 34

Evaluation of Huffman and Arithmetic Algorithms

for Multimedia Compression Standards

Asadollah Shahbahrami, Ramin Bahrampour, MobinS abbaghi Rostami,

Mostafa Ayoubi Mobarhan,

Department of Computer Engineering, Faculty of

Engineering, University of Guilan, Rasht, Iran.
shahbahrami@guilan.ac.ir

ramin.fknr@gmail.com, mobin.sabbaghi@gmail.com,

 mostafa_finiks7@yahoo.com

Abstract

Compression is a technique to reduce the quantity of data without excessively reducing the quality of the

multimedia data.The transition and storing of compressed multimedia data is much faster and more efficient

than original uncompressed multimedia data. There are various techniques and standards for multimedia

data compression, especially for image compression such as the JPEG and JPEG2000 standards. These

standards consist of different functions such as color space conversion and entropy coding. Arithmetic and

Huffman coding are normally used in the entropy coding phase. In this paper we try to answer the following

question. Which entropy coding, arithmetic or Huffman, is more suitable compared to other from the

compression ratio, performance, and implementation points of view? We have implemented and tested

Huffman and arithmetic algorithms. Our implemented results show that compression ratio of arithmetic

coding is better than Huffman coding, while the performance of the Huffman coding is higher than

arithmetic coding. In addition, implementation of Huffman coding is much easier than the arithmetic coding.

Keywords:

Multimedia Compression, JPEG standard, Arithmetic coding, Huffmancoding.

Introduction

Multimedia data, especially images have been increasing every day. Because of their large

capacity, storing and transmitting are not easy and they need large storage devices and high

bandwidth network systems. In order to alleviate these requirements, compression techniques and

standards such as JPEG, JPEG2000, MPEG-2, and MPEG-4 have been used and proposed. To

compress something means that you have a piece of data and you decrease its size [1, 2, 3, 4, 5].

The JPEG is a well-known standardized image compression technique that it loses information, so

the decompressed picture is not the same as the original one. Of course the degree of losses can be

adjusted by setting the compression parameters. The JPEG standard constructed from several

functions such as DCT, quantization, and entropy coding. Huffman and arithmetic coding are the

two most important entropy coding in image compression standards. In this paper, we are planning

International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol.1, No.4, August 2011

35

to answer the following question. Which entropy coding, arithmetic or Huffman, is more suitable

from the compression ratio, performance, and implementation points of view compared to other?

 We have studied, implemented, and tested these important algorithms using different image

contents and sizes. Our experimental results show that compression ratio of arithmetic coding is

higher than Huffman coding, while the performance of the Huffman coding is higher than

arithmetic coding. In addition, implementation complexity of Huffman coding is less than the

arithmetic coding.

The rest of the paper is organized as follow. Section 2 the JPEG compression standard and Section

3 and 4 explain Huffman and arithmetic algorithms, respectively. Section 5 discusses

implementation of the algorithms and standard test images. Experimental results are explained in

Section 6 followed by related work in Section 7. Finally, conclusions are drawn in Section 8.

The JPEG Compression Standard

The JPEG is an image compression standard developed by the Joint Photographic Experts Group.

It was formally accepted as an international in 1992. The JPEG consists of a number of steps, each

of which contributes to compression [3]

Figure1.Block diagram of the JPEG encoder[3].

Figure 1shows a block diagram for a JPEG encoder. If we reverse the arrows in the figure, we

basically obtain a JPEG decoder. The JPEG encoder consists of the following main steps.

The first step is about color space conversion. Many color images are represented using the RGB

color space. RGB representations, however, are highly correlated, which implies that the RGB

color space is not well-suited for independent coding [29]. Since the human visual system is less

sensitive to the position and motion of color than luminance [6, 7].Therefore, some color space

conversions such as RGB to YCbCr are used [29, 8].The next step of the JPEG standard consists of

Discrete Cosine Transform (DCT). A DCT expresses a sequence of finitely many data points in

International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol.1, No.4, August 2011

36

terms of a sum of cosine functions oscillating at different frequencies. DCTs are an important part

in numerous applications in science and engineering for the lossless compression of multimedia

data [1, 3]. The DCT separates the image into different frequencies part. Higher frequencies

represent quick changes between image pixels and low frequencies represent gradual changes

between image pixels.In order to perform the DCT on an image, the image should be divided into 8

× 8 or 16 × 16 blocks [9].

In order to keep some important DCT coefficients, quantization is applied on the transformed block

[10, 11]. After this step zigzag scanning is used. There are many runs of zeros in an image which

has been quantized throughout the matrix so, the 8 × 8 blocks are reordered as single 64-element

columns [4, 9].We get a vector sorted by the criteria of the spatial frequency that gives long runs of

zeros. The DC coefficient is treated separately from the 63 AC coefficients. The DC coefficient is

a measure of the average value of the 64 image samples [12].

Finally, in the final phases coding algorithms such as Run Length Coding(RLC) and Differential

Pulse Code Modulation(DPCM) and entropy coding are applied. The RLC is a simple and popular

data compression algorithm [13]. It is based on the idea to replace a long sequence of the same

symbol by a shorter sequence. The DC coefficients are coded separately from the AC ones. A DC

coefficient is coded by the DPCM, which is a lossless data compression technique. While AC

coefficients are coded using RLC algorithm. The DPCM algorithm records the difference between

the DC coefficients of the current block and the previous block [14]. Since there is usually strong

correlation between the DC coefficients of adjacent 8×8 blocks, it results a set of similar numbers

with high occurrence[15]. DPCM conducted on pixels with correlation between successive samples

leads to good compression ratios[16]. Entropy coding achieves additional compression using

encoding the quantized DCT coefficients more compactly based on their statistical characteristics.

Basically entropy coding is a critical step of the JPEG standard as all past steps depend on entropy

coding and it is important which algorithmis used, [17].The JPEG proposal specifies two entropy

coding algorithms, Huffman [18] and arithmetic coding [19]. In order to determine which entropy

coding is suitable from performance, compression ratio, and implementation points of view, we

focus on the mentioned algorithms in this paper.

Huffman Coding

In computer science and information theory, Huffman coding is an entropy encoding algorithm

used for lossless data compression [9]. The term refers to the use of a variable-length code table

for encoding a source symbol (such as a character in a file) where the variable-length code table

has been derived in a particular way based on the estimated probability of occurrence for each

possible value of the source symbol.Huffman coding is based on frequency of occurrence of a data

item. The principle is to use a lower number of bits to encode the data that occurs more frequently

[1]. The average length of a Huffman code depends on the statistical frequency with which the

source produces each symbol from its alphabet. A Huffman code dictionary [3], which associates

each data symbol with a codeword, has the property that no code-word in the dictionary is a prefix

of any other codeword in the dictionary [20].The basis for this coding is a code tree according to

Huffman, which assigns short code words to symbols frequently used and long code words to

symbols rarely used for both DC and AC coefficients, each symbol is encoded with a variable-

length code from the Huffman table set assigned to the 8x8 block’s image component. Huffman

codes must be specified externally as an input to JPEG encoders. Note that the form in which

International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol.1, No.4, August 2011

37

Huffman tables are represented in the data stream is an indirect specification with which the

decoder must construct the tables themselves prior to decompression [4]. The algorithm for

building the encoding follows this algorithm each symbol is a leaf and a root. The flowchart of

the Huffman algorithm is depicted in figure2.

Figure2.The flowchart of Huffman algorithm.

In order to clarify this algorithm, we give an example. We suppose that a list consists of 0, 2, 14,

136, and 222 symbols. Their occurrences are depicted in Table 1. As this table shows, symbol 0

occurs 100 times in the mentioned list. The Huffman tree and their final code are shown in figure 3

and Table 2 [21, 3].

International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol.1, No.4, August 2011

38

Table 2.Sequence of symbols and codes that are sentto the decoders. Figure 3. Process of building Huffman tree.

As can be seen in Table 2, the minimum number of bits that is assigned to the largest occurrences

symbol is one bit, bit 1 that is assigned to symbol 0. This means that we cannot assign fewer bits

than one bit to that symbol. This is the main limitation of the of the Huffman coding. In order to

overcome on this problem arithmetic coding is used that is discussed in the following section.

Arithmetic Coding

Arithmetic coding assigns a sequence of bits to a message, a sting of symbols. Arithmetic coding

can treat the whole symbols in a list or in a message as one unit [22]. Unlike Huffman coding,

arithmetic coding doesn´t use a discrete number of bits for each. The number of bits used to encode

each symbol varies according to the probability assigned to that symbol. Low probability symbols

use many bit, high probability symbols use fewer bits [23]. The main idea behind Arithmetic

coding is to assign each symbol an interval. Starting with the interval [0...1), each interval is

divided in several subinterval, which its sizes are proportional to the current probability of the

corresponding symbols [24]. The subinterval from the coded symbol is then taken as the interval

for the next symbol. The output is the interval of the last symbol [1, 3]. Arithmetic coding

algorithm is shown in the following.

International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol.1, No.4, August 2011

39

BEGIN

low = 0.0; high = 1.0; range = 1.0;

while (symbol != terminator)

{ get (symbol);

low = low + range * Range_low(symbol);

high = low + range * Range_high(symbol);

range = high - low;}

output a code so that low <= code < high;

END.[3]

The Figure 4 depicts the flowchart of the arithmetic coding.

International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol.1, No.4, August 2011

40

In order to clarify the arithmetic coding, we explain the previous example using this algorithm.

Table 3 depicts the probability and the range of the probability of the symbols between 0 and 1.

Symbols Probability Range

0 0.63 [0 , 0.63)

2 0.11 [0.63 , 0.74)

International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol.1, No.4, August 2011

41

We suppose that the input message consists of the following symbols: 2 0 0 136 0 and it start

from left to right. Figure 5 depicts the graphical explanation of the arithmetic algorithm of this

message from left to right. As can be seen, the first probability range is 0.63 to 0.74 (Table 3)

because the first symbol is 2.

Theencoded interval for the mentioned example is [0.6607, 0.66303). A sequence of bits are

assigned to a number that is located in this range.

Referring to Figure 2 and 4 and considering the discussed example in Figure 3 and 5, we can say

that implementation complexity of arithmetic coding is more than Huffman. We saw this

behavior in the programming too.

Implementation of Algorithms

14 0.1 [0.74 , 0.84)

136 0.1 [0.84 , 0.94)

222 0.06 [0.94 , 1.0)

Input symbols: 2 0 0 136 0

Table 3.Probability and ranges distribution of symbols

International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol.1, No.4, August 2011

42

A part of the implemented codes is depicted in Figure 6. We executed and tested both codes on

many standard and famous images such as "Lena image". These standard test imageshave been

used by different researchers[25, 26, 27, 28] related to image compression and image applications.

We use different image sizes such as 128×128, 256×256, 512×512,1024×1024 and 2048×2048.

The same inputs are used for both algorithms.

Figure 6. The segment codes of entropy coding

%***********Start Huffman Coding

for time= 1:100

tic

k=0;

VECTOR-HUFF(1)= V(1);

for l= 1:m

 a=0;

for q=1:k

if(VECTOR (l)== VECTOR-HUFF (q));

 a=a+1;

end

end

if (a==0)

 k=k+1;

 VECTOR-HUFF(k)= V(l);

end

end

for u=1:k

 a=0;

for l=1:m

if (V(l)== VECTOR-ARITH(u))

 a=a+1;

end

 VECTOR-HUFF-NUM(u)= a;

end

end

for i=1:k

P(i)= VECTOR-HUFF-NUM (i)/(m1);

end

dict = huffmandict(VECTOR-HUFF,P);

hcode = huffmanenco(VECTOR,dict);

 [f1,f2]=size(hcode);

 Compression ratio =b0/f2

toc

end

%***********Start Huffman Coding

for time= 1:100

tic

k=0;

VECTOR-HUFF(1)= V(1);

for l= 1:m

 a=0;

for q=1:k

if(VECTOR (l)== VECTOR-HUFF (q));

 a=a+1;

end

end

if (a==0)

 k=k+1;

 VECTOR-HUFF(k)= V(l);

end

end

for u=1:k

 a=0;

for l=1:m

if (V(l)== VECTOR-ARITH(u))

 a=a+1;

end

 VECTOR-HUFF-NUM(u)= a;

end

end

for i=1:k

P(i)= VECTOR-HUFF-NUM (i)/(m1);

end

dict = huffmandict(VECTOR-HUFF,P);

hcode = huffmanenco(VECTOR,dict);

 [f1,f2]=size(hcode);

 Compression ratio =b0/f2

toc

end

International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol.1, No.4, August 2011

43

Experimental Results

The experimental results of the implemented algorithms, Huffman and arithmetic coding for

compression ratio and execution time are depicted in Table 5. As this table shows, on one hand,

the compression ratio of the arithmetic coding for different image sizes is higher than the

Huffman coding. On the other hand, arithmetic coding needs more execution time than Huffman

coding. This means that the high compression ratio of the arithmetic algorithm is not free. It

needs more resources than Huffman algorithm.

Test Image Size Compression Ratio

 (bits/sample)

Algorithm Execution

Times(seconds)

Comparison

Arithmetic to

Huffman (%)

 Huffman Arithmetic Huffman Arithmetic Compression Time

2048×2048 6.37 12.02 32.67 63.22 47 48

1024×1024 5.64 7.73 8.42 20.37 27 58

512×512 5.27 6.55 2.13 5.67 19 59

256×256 4.78 5.40 0.55 1.63 11 66

128×128 4.38 4.65 0.14 0.45 5 68

Table 5.Average of compression results on test image set

Another behavior that can be seen in Table 5 is,by increasing image sizes from 128X128 to

2048X2048,the improvement of the compression ratio of the arithmetic coding increases more

than the Huffman coding. For instance, the compression ratio of Huffman algorithm for image

sizes of 1024X1024 and 2048X2048 is 5.64 and 6.37, respectively. While for arithmetic coding is

7.73 and 12.02, respectively. Figures 7 and 8 depict a comparison of the compression ratio and

execution time for the arithmetic and Huffman algorithms, respectively. In other words, these

figures are the other representation of presented results in Table 5.

 Figure 7. Comparison of compression ratio for Huffman and arithmetic algorithms using different image

sizes.

International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol.1, No.4, August 2011

44

 Figure 8. Comparison of performance for Huffman and arithmetic algorithms using different image sizes

Related Work

Huffman[18] in 1952 proposed an elegant sequential algorithm which generates optimal prefix

codes in O(nlogn) time. The algorithm actually needs only linear time provided that the

frequencies of appearances are sorted in advance. There have been extensive researches on

analysis, implementation issues and improvements of the Huffman coding theory in a variety of

applications [31, 32]. In [33], a two-phase parallel algorithm for time efficient construction of

Huffman codes has been proposed. A new multimedia functional unit for general-purpose

processors has been proposed in [34] in order to increase the performance of Huffamn coding.

Texts are always compressed with lossless compression algorithms. This is because a loss in a

text will change its original concept. Repeated data is important in text compression. If a text has

many repeated data, it can be compressed to a high ratio.This is due to the fact that compression

algorithms generally eliminate repeated data. In order to evaluate the compression algorithms on

the text data, a comparison between arithmetic and Huffman coding algorithms for different text

files with different capacities has been performed in [30]. Experimental results showed that the

compression ratio of the arithmetic coding for text files is better than Huffamn coding, while the

performance of the Huffman coding is better than the arithmetic coding.

Conclusions

Compression is an important technique in the multimedia computing field. This is because we can

reduce the size of data and transmitting and storing the reduced data on the Internet and storage

devices are faster and cheaper than uncompressed data. Many image and video compression

standards such as JPEG, JPEG2000, and MPEG-2, and MPEG-4 have been proposed and

implemented. In all of them entropy coding, arithmetic and Huffman algorithms are almost used.

In other words, these algorithms are important parts of the multimedia data compression

standards. In this paper we have focused on these algorithms in order to clarify their differences

International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol.1, No.4, August 2011

45

from different points of view such as implementation, compression ratio, and performance. We

have explained these algorithms in detail, implemented, and tested using different image sizes

and contents. From implementation point of view, Huffman coding is easier than arithmetic

coding. Arithmetic algorithm yields much more compression ratio than Huffman algorithm while

Huffman coding needs less execution time than the arithmetic coding. This means that in some

applications that time is not so important we can use arithmetic algorithm to achieve high

compression ratio, while for some applications that time is important such as real-time

applications, Huffman algorithm can be used.

 In order to achieve much more performance compared to software implementation, both

algorithms can be implemented on hardware platform such as FPGAs using parallel processing

techniques. This is our future work.

References

[1] Sharma, M.: 'Compression Using Huffman Coding'.International Journal of Computer Science and

Network Security, VOL.10 No.5, May 2010.

[2] Wiseman, Y.: 'Take a Picture of Your Tire!'.Computer Science Department Holon Institute of

Technology Israel.

[3] Li, Z., and Drew, M. S.: 'Fundamental of Multimedia, School of Computing Science Fraser University,

2004.

[4] Gregory, K.: 'The JPEG Still Picture Compression Standard'. Wallace Multimedia Engineering Digital

Equipment Corporation Maynard, Massachusetts, December 1991.

[5] M.Mansi, K. And M.Shalini B.: 'Comparison of Different Fingerprint CompressionTechniques'. Signal

and ImageProcessing : An International Journal(SIPIJ) Vol.1, No.1, September 2010.

[6] Shilpa, S. D. and DR. Sanjayl. N.: 'Image Compression Based on IWT, IWPT and DPCM-IWPT' .

International Journal of Engineering Science and Technology Vol. 2 (12), 2010, 7413-7422.

[7] Wang, J., Min, K., Jeung, Y. C. and Chong, J. W.: 'Improved BTC Using Luminance Bitmap for Color

Image Compression'.IEEE Image and Signal Processing, 2009.

[8] Mateos, J., Ilia, C., Jimenez, B., Molina, R. and Katsaggelos, A. K. : 'Reduction of Blocking Artifacts

in Block Transformed Compressed Color Images'.

[9] O’Hanen, B., and Wisan M.:'JPEG Compression'. December 16, 2005.

[10] Li, J., Koivusaari, J., Takalal, J., Gabbouj, M., and Chen, H.: 'Human Visual System Based Adaptive

Inter Quantization'.Department of Information Technology, Tampere University of Technology

Tampere, FI-33720, Finland, School of Communication Engineering, Jilin University

Changchun,China.

[11] Garg, M.: 'Performance Analysis of Chrominance Red andChrominance Blue in JPEG'.World

Academy of Science, Engineering and Technology 43,2008.

International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol.1, No.4, August 2011

46

[12] Ganvir, N.N., Jadhav,A.D., and Scoe, P.: 'Explore the Performance of the ARM Processor Using

JPEG'. International Journal on Computer Science and Engineering, Vol. 2(1), 2010, 12-17.

[13] Baik, H., Sam Ha, D., Yook, H. G., Shin, S. C. and Park, M. S.: 'Selective Application of Burrows-

Wheeler Transformation for Enhancement of JPEG Entropy Coding'. International Conference on

Information, Communications & Signal Processing, December 1999, Singapore.

[14] Blelloch, G.: 'Introduction to Data Compression'. Carnegie Mellon University,September ,2010.

[15] Dubey, R.B., and Gupta, R.: ' High Quality Image Compression'.Asst. Prof, E & IE, APJ College of

Eng., Sohna, Gurgaon, 121003 – India, Mar 2011.

[16] Klein, S.T., and Wiseman, Y.: 'Parallel Huffman Decoding with Applications to JPEG Files'.The

Computer Journal, 46(5), British Computer Society,2003.

[17] Rosenthal, J.: 'JPEG Image Compression Using an FPGA'. University of California, December 2006

[18] Huffman, D. A. : ‘A Method for the Construction of Minimum Redundancy Codes", Proc. IRE, Vol.

40, No. 9,pp. 1098-1101, September 1952.

[19] Pennebaker, W. B. and Mitchell., J.L.: 'Arithmetic Coding Articles', IBM J. Res. Dev., vol. 32, 1988.

pp. 717-774.

[20] Mitzenmacher, M.: 'On the Hardness of Finding Optimal Multiple Preset Dictionaries'. IEEE

Transaction on Information Theory, VOL. 50, NO. 7, JULY 2004.

[21] Wong, J., Tatikonda M., and Marczewski, J.: 'JPEG Compression Algorithm Using CUDA

Course'.Department of Computer Engineering University of Toronto.

[22] Rissanen, J. J. and Langdon, G. G.: 'Arithmetic Coding'. IBM Journal of Research and Development,

23(2):146–162, March 1979.

[23] Redmill, D. W. and Bull, D. R.: 'Error Resilient Arithmetic Coding of Still Images'. Image

Communications Group, Centre for Communications Research, University of Bristol, Bristol.

[24] Kavitha, V. and Easwarakumar, K. S. : 'Enhancing Privacy in Arithmetic Coding'. ICGST-AIML

Journal, Volume 8, Issue I, June 2008.

[25] Kao, Ch., H, and Hwang, R. J.: 'Information Hiding in Lossy Compression Gray Scale Image',

Tamkang Journal of Science and Engineering, Vol. 8, No 2, 2005, pp. 99- 108.

[26] Ueno, H., and Morikawa, Y.: 'A New Distribution Modeling for Lossless Image Coding Using MMAE

Predictors'.The 6th International Conference on Information Technology and Applications, 2009.

[27] Grgic, S., Mrak, M., and Grgic, M.: 'Comparison of JPEG Image Coders'. University of Zagreb,

Faculty of Electrical Engineering and Computing Unska 3 / XII, HR-10000 Zagreb, Croatia.

[28] http://sipi.usc.edu, accessed Mar 2011.

International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol.1, No.4, August 2011

47

[29] Shahbahrami, A., Juurlink, B.H.H., Vassiliadis, S. Accelerating Color Space Conversion Using

Extended Subwords and the Matrix Register File, Eighth IEEE International Symposium on

Multimedia, pp. 37-46, San Diego, The USA, December 2006.

[30] Jafari, A. and Rezvan, M. and Shahbahrami, A.:’A Comparison Between Arithmetic and Huffman

Coding Algorithms’ The 6
th

 Iranian Machine Vision and Image Processing Conference, pp: 248-254,

October, 2010.

[31] Buro. M.: ‘On the maximum length of Huffman codes’, Information Processing Letters, Vol. 45,

No.5, pp. 219-223, April 1993.

[32] Chen, H. C. and Wang, Y. L. and Lan, Y. F.: ‘A Memory Efficient and Fast Huffman Decoding

Algorithm’ Information Processing Letters, Vol. 69, No. 3, pp. 119- 122, February 1999.

[33] Ostadzadeh, S. A. and Elahi, B. M. and Zeialpour, Z. T, and Moulavi, M. M and Bertels, K. L. M, : A

Two Phase Practical Parallel Algorithm for Construction of Huffman Codes, Proceedings of

International Conference on Parallel and Distributed Processing Techniques and Applications, pp.

284-291, Las Vegas, USA, June 2007.

[34] Wong, S. and Cotofana, D. and Vassiliadis, S.: General-Purpose Processor Huffman Encoding

Extension, Proceedings of the International Conference on Information Technology: Coding and

Computing (ITCC 2000), pp. 158-163, Las Vegas, Nevada, March 2000

