
International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol.1, No.4, August 2011

DOI : 10.5121/ijcsea.2011.1411 121

Assessing Software Reliability Using SPC – An

Order Statistics Approach

K.Ramchand H Rao Dr. R.Satya Prasad Dr. R.R.L.Kantham

1
 Department of Computer Science, A.S.N. Degree College, Tenali, India

ramkolasani@gmail.com
2
Department of Computer Science, Acharya Nagarjuna University, Guntur, India

Profrsp@gmail.com
3
Dept. of Statistics, Acharya Nagarjuna University, Guntur, INDIA,

kantam_rrl@rediffmail.com

Abstract

There are many software reliability models that are based on the times of occurrences of errors in the

debugging of software. It is shown that it is possible to do asymptotic likelihood inference for software

reliability models based on order statistics or Non-Homogeneous Poisson Processes (NHPP), with

asymptotic confidence levels for interval estimates of parameters. In particular, interval estimates from

these models are obtained for the conditional failure rate of the software, given the data from the

debugging process. The data can be grouped or ungrouped. For someone making a decision about when to

market software, the conditional failure rate is an important parameter. Order statistics are used in a wide

variety of practical situations. Their use in characterization problems, detection of outliers, linear

estimation, study of system reliability, life-testing, survival analysis, data compression and many other

fields can be seen from the many books. Statistical Process Control (SPC) can monitor the forecasting of

software failure and thereby contribute significantly to the improvement of software reliability. Control

charts are widely used for software process control in the software industry. In this paper we proposed a

control mechanism based on order statistics of cumulative quantity between observations of time domain

failure data using mean value function of Half Logistics Distribution (HLD) based on NHPP.

Keywords

Order Statistics, Statistical Process Control (SPC), Half Logistics Distribution (HLD), NHPP

1. INTRODUCTION

The monitoring of Software reliability process is a far from simple activity. In recent years,

several authors have recommended the use of SPC for software process monitoring. A few others

have highlighted the potential pitfalls in its use[1]. The main thrust of the paper is to formalize

and present an array of guidelines in a disciplined process with a view to helping the practitioner

in putting SPC to correct use during software process monitoring. Over the years, SPC has come

to be widely used among others, in manufacturing industries for the purpose of controlling and

improving processes [11]. Our effort is to apply SPC techniques in the software development

process so as to improve software reliability and quality [2]. It is reported that SPC can be

successfully applied to several processes for software development, including software reliability

process. SPC is traditionally so well adopted in manufacturing industry. In general software

development activities are more process centric than product centric which makes it difficult to

International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol.1, No.4, August 2011

122

apply SPC in a straight forward manner. The utilization of SPC for software reliability has been

the subject of study of several researchers. A few of these studies are based on reliability process

improvement models. They turn the search light on SPC as a means of accomplishing high

process maturities. Some of the studies furnish guidelines in the use of SPC by modifying general

SPC principles to suit the special requirements of software development [2] (Burr and Owen[3];

Flora and Carleton[4]). It is especially noteworthy that Burr and Owen provide seminal guidelines

by delineating the techniques currently in vogue for managing and controlling the reliability of

software. Significantly, in doing so, their focus is on control charts as efficient and appropriate

SPC tools. It is accepted on all hands that Statistical process control acts as a powerful tool for

bringing about improvement of quality as well as productivity of any manufacturing procedure

and is particularly relevant to software development also. Viewed in this light, SPC is a method

of process management through application of statistical analysis, which involves and includes

the defining, measuring, controlling, and improving of the processes [5].

2. Ordered Statistics

Order statistics are used in a wide variety of practical situations. Their use in characterization

problems, detection of outliers, linear estimation, study of system reliability, life-testing, survival

analysis, data compression and many other fields can be seen from the many books [6]. Order

statistics deals with properties and applications of ordered random variables and of functions of

these variables. The use of order statistics is significant when failures are frequent or inter failure

time is less. Let X denote a continuous random variable with probability density function f(x) and

cumulative distribution function F(x), and let (X1 , X2 , …, Xn) denote a random sample of size n

drawn on X. The original sample observations may be unordered with respect to magnitude. A

transformation is required to produce a corresponding ordered sample. Let (X(1) , X(2) , …, X(n))

denote the ordered random sample such that X(1) < X(2) < … < X(n); then (X(1), X(2), …, X(n)) are

collectively known as the order statistics derived from the parent X. The various distributional

characteristics can be known from Balakrishnan and Cohen [7]. The inter-failure time data

represent the time lapse between every two consecutive failures. On the other hand if a

reasonable waiting time for failures is not a serious problem, we can group the inter-failure time

data into non overlapping successive sub groups of size 4 or 5 and add the failure times with in

each sub group. For instance if a data of 100 inter-failure times are available we can group them

into 20 disjoint subgroups of size 5. The sum total in each subgroup would denote the time lapse
between every 5th order statistics in a sample of size 5.In general for inter-failure data of size ‘n’,

if r (any natural no) less than ‘n’ and preferably a factor n, we can conviently divide the data into

‘k’ disjoint subgroups (k=n/r) and the cumulative total in each subgroup indicate the time

between every rth failure. The probability distribution of such a time lapse would be that of the

rth ordered statistics in a subgroup of size r, which would be equal to rth power of the distribution

function of the original variable (m(t)). The whole process involves the mathematical model of

the mean value function and knowledge about its parameters. If the parameters are known they
can be taken as they are for the further analysis, if the parameters are not know they have to be

estimated using a sample data by any admissible, efficient method of distribution. This is

essential because the control limits depend on mean value function, which intern depends on the

parameters. If software failures are quite frequent keeping track of inter-failure is tedacious. If

failures are more frequent order statistics are preferable.

3. Model Description

To calculate the parameter values and control limits using Order Statistics approach, we

considered Half Logistic Distribution [8][12].

International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol.1, No.4, August 2011

123

The mean value function of HLD [8] is
()

()
1

()
1

bt

bt

a e
m t

e

−

−

−
=

+
 3.1

To get m(t) value for r
th
 Order Statistics, take m(t) to the power ‘r’

[]
r

bt

bt
r

e1

e1
a)t(m 











+

−
=

−

−

 3.2

[]
r

bs

bs
r

k
k

k

e1

e1
a)s(m 











+

−
=

−

−

 3.3

Derivation with respect to t of equation 4.3.2

() ()()
() 














+

−−−+











+

−
=

−

−−−−
−

−

−

2bs

bsbsbsbs
1r

bs

bs
r

k
k

kkkk

k

k

e1

bee1e1be

e1

e1
r.a)s('m

 3.4

() 1

1

)1(. 2
)('

1

+−

−−

+

−
=

−

rbs

bsbsr

k
k

rkk

e

eerab
sm

 3.5














= ∏

=

−
n

1k

k
')()(sm nsmeLogLLog

() 














+

−
+−=

+−

−−

=

−

∑ 1
1 1

12 1

rbs

bsbsrn

k

n
k

rkk

e

eerab
Logsm

)(.
)(

 3.6

[])e1log()1r()e1log()1r(bsrlogalogrblog2log
e1

e-1
 aL kk

k

k
bsbs

k

n

1k

r

bs-

bs-
r −−

=

++−−−+−++++












+
−= ∑

 3.7

Derivation with respect to ‘a’







−=−++++









+
−=

∂

∂
∑

=

− 000000
e1

e-1

a

L

1

1

r

bs-

bs-
1

n

n

a

r
ra

L

n

k

r

∏
=

−=
n

1k

k

')(
)(sm nsm

eL

International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol.1, No.4, August 2011

124

e1

e-1

n

n

bs-

bs-














+









+
−= na

a

r
r

r

0=
∂

∂

a

L

L

1

0n
e1

e1
a-

a

r
r

bs

bs

r

n

n

=











+









+

−
−

−

0n
e1

e1
 a

r

bs

bs

r

n

n

=+








+

−
−

−

−

r

bs

bs

r

n

n

e1

e1
 n a 









+

−
=

−

−

() 













+











+

−
−=

∂

∂

−

−
−

−

−

2bs

bs
1r

bs

bs
r

n

n

n

n

e1

e b2

e1

e1
 r.a

b

L

L

1

()
)be(

e1

1r
)be(

e1

1r
sk00

b

1
0

e1

e b2

e1

e1
 r.a

b

L

L

1
k

k

k

kn

n

n

n

bs

bs

bs
n

1k
bs2bs

bs
1r

bs

bs

r −

−

−

=
−−

−
−

−

−

−
+

+
−

−

−
+−++++













+









+

−
−=

∂

∂
∑

 ()









+

+
+

−

−
+−+

+

−
=

−−

−

=
+−

−−−

∑
kk

k

n

nn

bsbs

bs
n

1k

k1rbs

1rbsbsr

e1

1r

e1

1r
bes

b

1

e1

)e1(e a 2br-

()









−

+−++−+−
++

+

−
=

∂

∂
−

−−

=

−

+−

−−−

∑
k

kk

k

n

nn

bs2

bsbsn

1K

bs
k1rbs

1rbsbsr

e1

)e)(1r(1re)1r(1r
bens-

b

n

e1

)e1(e a 2br-

b

L

L

1

()









−

−
++

+

−
=

∂

∂
−

−

=

−

+−

−−−

∑
k

k

k

n

nn

bs2

bsn

1K

bs
k1rbs

1rbsbsr

e1

e2r2
bens-

b

n

e1

)e1(e a 2br-

b

L

L

1

International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol.1, No.4, August 2011

125

()









−

−
++

+

−
=

−

−−

=
+−

−−−

∑
k

kk

n

nn

bs2

bsbsn

1K

k2rbs

1rbsbsr

e1

er be2
ns-

b

n

e1

)e1(e a 2br-
)b(g

()









−

−
++











−

+

+

−
=

−

−−

=
−

−

+−

−−−

∑
k

kk

n

n

n

nn

bs2

bsbsn

1K

k

r

bs

bs

1rbs

1rbsbs

e1

er be2
ns-

b

n

e1

e1
n

e1

)e1(e 2br
)b(g

()() 












−

−
++

−+
=

−

−−

=
−−

−

∑
k

kk

nn

n

bs2

bsbsn

1K

kbsbs

bs

e1

er be2
ns-

b

n

 e1 e1

e 2nb

()
∑∑∑∑

=
−

−

=
−

−

=
−

−−

−

−−

=
−

−

−
−

−
+

−

−
+








−

−
++

−
=

n

1K
bs2

bs2n

1K
bs2

bsn

1K
bs2

bs2bs

bs2

bsbsn

1K

kbs2

bs

k

k

k

k

k

kk

k

kk

n

n

e1

be
2

e1

be
r2

e1

be bre
2

e1

er be2
ns-

b

n

 e1

e 2nb

∑∑
=

−
=

−−

−

−
−

−
++

−
=

n

1K
bs2

n

1K
bsbskbs2

bs

1e

b
2

ee

b
r2ns-

b

n

 e1

e 2nb
)b(g

kkkn

n

 3.8

()()
()

() ()
()∑

=
−

−−

−

−−−−

−

+−−
+−








+









−

−−
=

n

1k
2bsbs

bs
k

bs
k

bsbs

22bs2

bsbsbs2bs
n

bs
'

kk

kkkk

n

nnnnn

ee

esesbee.1
r20

b

1-
n

 e1

)be2(bee-1 ebse
n2)b(g

()
()∑

= −

−−
−

n

1k
2bs2

bs2
k

bs2

1e

es2b1e.1
n2

k

kk

[]
()

()
()∑

=
−

−−

−

−−−

−

+−−
++

−

−−−
=

n

1k
2bsbs

bsbs
k

bsbs

22bs2

bs22bs2
n

bs

kk

kkkk

n

nnn

ee

eebsee
r2

b

n

e1

eb2)e1)(bs1(e
n2

 ()
∑

= −

−−
−

n

1k
2bs2

bs2
k

bs2

1e

ebs21e
n2

k

kk

 3.9

International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol.1, No.4, August 2011

126

4. Monitoring the time between failures using control -chart

The selection of proper SPC charts is essential to effective statistical process control

implementation and use. There are many charts which use statistical techniques. It is important

to use the best chart for the given data, situation and need [9].There are advances charts that

provide more effective statistical analysis. The basic types of advanced charts, depending on the

type of data are the variable and attribute charts. Variable control chats are designed to control

product or process parameters which are measured on a continuous measurement scale. X-bar, R

charts are variable control charts. Attributes are characteristics of a process which are stated in

terms of good are bad, accept or reject, etc. Attribute charts are not sensitive to variation in the
process as variables charts. However, when dealing with attributes and used properly, especially

by incorporating a real time pareto analysis, they can be effective improvement tools. For

attribute data there are : p-charts, c-charts, np-charts, and u-charts. We have named the control

chart as Failures Control Chart in this paper. The said control chart helps to assess the software

failure phenomena on the basis of the given inter- failure time data

5. Estimation of Parameters and Control Limits

 Given the data observations and sample size and using equations (3.1),(3.8),(3.9), the

parameters

‘a ‘ and ‘b’ are computed by using the popular NR method . A program written in C was used for

this purpose. The equation for mean value function of Half Logistic Distribution is given by

���� � � �1 	
��

1 �
��
�

The Control limits are obtained as follows: Delete the term ‘a’ from the mean value function.

Equate the remaining function successively to 0.99865,0.00135, 0.5 and solve for ‘t’, for half

logistic distribution , in order to get the usual Six sigma corresponding control limits, central line.

F(t) =
������
������ � 0.99865

⇒ 1 	
��
 � 0.99865�1 �
��
�
⇒ 1 	
��
 � 0.99865 � 0.99865
��

⇒ 1 	 0.99865 �
��
 � 0.99865.
��

⇒ 0.00135 � �1 � 0.99865�
��

⇒
��
 � �.��� !

�.""#$! � 0.000675456

⇒ �'� � log�0.000675456� � �7.300122639
It gives

Ut
b

t ==
300122639.7

 4.1

Lt
b

t ==
002700002.0

 4.2

Ct
b

t ==
098612289.1

 4.3

International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol.1, No.4, August 2011

127

The control limits are such that the point above the m(tU) (4.1)(UCL) is an alarm signal. A point

below the m(tL)(4.3) (LCL) is an indication of better quality of software. A point within the

control limits indicates stable process.

5.1 Developing Failures Chart:

Given the n inter-failure data the values of m(t) at Tc, Tu, TL and at the given n inter-failure times
are calculated. Then successive differences of the m(t)’s are taken, which leads to n-1 values.

The graph with the said inter-failure times 1 to n-1 on X-axis, the n-1 values of successive

differences m(t)’s on Y-axis, and the 3 control lines parallel to X-axis at m(TL), m(TU), m(TC)

respectively constitutes failures control chart to assess the software failure phenomena on the

basis of the given inter-failures time data.

6. Illustration

The procedure of a failures control chart for failure software process is illustrated with an

example here. Table 1 show the time between failures of software product [10].

Table:1 Software failure data reported by Musa(1975) [10]

Fault Time Fault Time Fault Time Fault Time

1 3 35 227 69 529 103 108

2 30 36 65 70 379 104 0

3 113 37 176 71 44 105 3110

4 81 38 58 72 129 106 1247

5 115 39 457 73 810 107 943

6 9 40 300 74 290 108 700

7 2 41 97 75 300 109 875

8 91 42 263 76 529 110 245

9 112 43 452 77 281 111 729

10 15 44 255 78 160 112 1897

11 138 45 197 79 828 113 447

12 50 46 193 80 1011 114 386

13 77 47 6 81 445 115 446

14 24 48 79 82 296 116 122

15 108 49 816 83 1755 117 990

16 88 50 1351 84 1064 118 948

17 670 51 148 85 1783 119 1082

18 120 52 21 86 860 120 22

19 26 53 233 87 983 121 75

20 114 54 134 88 707 122 482

21 325 55 357 89 33 123 5509

22 55 56 193 90 868 124 100

23 242 57 236 91 724 125 10

24 68 58 31 92 2323 126 1071

25 422 59 369 93 2930 127 371

26 180 60 748 94 1461 128 790

27 10 61 0 95 843 129 6150

28 1146 62 232 96 12 130 3321

29 600 63 330 97 261 131 1045

30 15 64 365 98 1800 132 648

31 36 65 1222 99 865 133 5485

32 4 66 543 100 1435 134 1160

33 0 67 10 101 30 135 1864

34 8 68 16 102 143 136 4116

International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol.1, No.4, August 2011

128

Table: 2 Parameter estimates and their control limits of 4 and 5 order

Data Set Order a b)(Utm)(Ctm

)(Ltm

Table 1 4 2.414736 0.000727 2.411476 1.207368 0.003260

5 1.933309 0.000114 1.930699 0.966655 0.002610

Table: 3 Successive differences of 4 order m(t)’s of Table 1

Fault

4-order

Cumul-

atives

m(t)

Successive

Difference’s

Of m(t)’s

Fault

4-order

Cumul-

atives

m(t)

Successive

Difference’s

Of m(t)’s

1 227 0.198799753 0.187575193 18 16358 2.414702952 2.49182E-05

2 444 0.386374945 0.263437663 19 18287 2.41472787 6.58063E-06

3 759 0.649812608 0.234105106 20 20567 2.41473445 1.43319E-06

4 1056 0.883917714 0.608610384 21 24127 2.414735884 1.11484E-07

5 1986 1.492528098 0.318281856 22 28460 2.414735995 4.70782E-09

6 2676 1.810809953 0.419004464 23 32408 2.414736 2.76672E-10

7 4434 2.229814417 0.068367032 24 37654 2.414736 5.98011E-12

8 5089 2.298181449 0.022394142 25 42015 2.414736 4.84057E-14

9 5389 2.320575591 0.047885291 26 42296 2.414736 2.10498E-13

10 6380 2.368460882 0.02486038 27 48296 2.414736 0

11 7447 2.393321262 0.006233656 28 52042 2.414736 0

12 7922 2.399554918 0.012395799 29 53443 2.414736 0

13 10258 2.411950717 0.001354859 30 56485 2.414736 0

14 11175 2.413305576 0.000907338 31 62651 2.414736 0

15 12559 2.414212914 0.000256454 32 64893 2.414736 0

16 13486 2.414469368 0.000194113 33 76057 2.414736 0

17 15277 2.414663481 3.94709E-05 34 76057 2.414736

International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol.1, No.4, August 2011

129

Fig 1: Failures Control Chart of Table 3

Table: 4 Successive differences of 5 order m(t)’s of Table 1

Fault

5-order

Cumul-

atives

m(t)

Successive

Difference’s

Of m(t)’s

Fault

5-order

Cumula-

tives

m(t)

Successive

Difference’s

Of m(t)’s

1 342 0.037683152 0.025218047 15 17758 1.482215615 0.112791696

2 571 0.062901199 0.043662939 16 20567 1.595007310 0.146671923

3 968 0.106564138 0.111360223 17 25910 1.741679234 0.060209283

4 1986 0.217924362 0.119966118 18 29361 1.801888517 0.079206429

5 3098 0.337890480 0.203633678 19 37642 1.881094946 0.020328756

6 5049 0.541524158 0.027802654 20 42015 1.901423702 0.010165625

7 5324 0.569326811 0.104303350 21 45406 1.911589327 0.007940730

8 6380 0.673630162 0.119182170 22 49416 1.919530057 0.004939245

9 7644 0.792812332 0.210720360 23 53321 1.924469302 0.002672472

10 10089 1.003532692 0.069983093 24 56485 1.927141773 0.003114633

11 10982 1.073515785 0.114193668 25 62661 1.930256406 0.002248122

12 12559 1.187709454 0.136486011 26 74364 1.932504528 0.000553008

13 14708 1.324195465 0.081511891 27 84566 1.933057536

14 16185 1.405707355 0.076508259

UCL 2.411476106CL 1.207368000

LCL 0.003259894

0.000000000

0.000000001

0.000000100

0.000010000

0.001000000

0.100000000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

S
u

c
c
e

s
iv

e
 D

if
fe

r
e

n
c
e

Failure Number

Failures Control Chart

International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol.1, No.4, August 2011

130

Fig 2 : Failures Control Chart of Table 4

7. CONCLUSION

The Failures Control Charts of Fig 1 to 2 have shown out of control signals i.e. below LCL. By

observing Failures Control Charts, we identified that failures situation is detected at an early

stages. The early detection of software failure will improve the software reliability. When the

control signals are below LCL, it is likely that there are assignable causes leading to significant

process deterioration and it should be investigated. Hence, we conclude that our control

mechanism proposed in this chapter with order statistics approach giving a positive

recommendation for its use to estimate whether the process is in control or out of control.

ACKNOWLEDGMENTS

Our thanks to Department of Computer Science and Engineering; Department of Statistics,

Acharya Nagarjuna University; Department of Computer Sceince, Annabathuni Satyanaraya

Degree College, Tenali, for providing necessary facilities to carryout the research work.

REFERENCES

[1] N. Boffoli, G. Bruno, D. Cavivano, G. Mastelloni; Statistical process control for Software: a

systematic approach; 2008 ACM 978-1-595933-971-5/08/10.

[2] K. U. Sargut, O. Demirors; Utilization of statistical process control (SPC) in emergent software

organizations: Pitfallsand suggestions; Springer Science + Business media Inc. 2006.

[3] Burr,A. and Owen ,M.1996. Statistical Methods for Software quality . Thomson publishing Company.

ISBN 1-85032-171-X.

[4] Carleton, A.D. and Florac, A.W. 1999. Statistically controlling the Software process. The 99 SEI

Software Engineering Symposimn, Software Engineering Institute, Carnegie Mellon University.

[5] Mutsumi Komuro; Experiences of Applying SPC Techniques to software development processes;

2006 ACM 1-59593-085-x/06/0005.

[6] Arak M. Mathai ;Order Statistics from a Logistic Dstribution and Applications to Survival and

Reliability Analysis;IEEE Transactions on Reliability, vol.52, No.2; 2003

[7] Balakrishnan.N., Clifford Cohen; Order Statistics and Inference; Academic Press inc.;1991.

UCL 1.930699033
CL 0.966654500

LCL 0.002609967

0.000100000

0.000500000

0.002500000

0.012500000

0.062500000

0.312500000

1.562500000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

S
u

c
c
e

s
iv

e
 D

if
fe

r
e

n
c
e

Failure Number

Failures Control Chart

International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol.1, No.4, August 2011

131

[8] R.SatyaPrasad, “ Software Reliability with SPC”; International Journal of Computer Science and

Emerging Technologies; Vol 2, issue 2, April 2011. 233-237

[9] Ronald P.Anjard;SPC CHART selection process;Pergaman 0026-27(1995)00119-0Elsevier science

ltd.

[10] Hong Pharm; System Reliability; Springer;2005;Page No.281

[11] M.Xie, T.N. Goh, P. Rajan; Some effective control chart procedures for reliability monitoring;

Elsevier science Ltd, Reliability Engineering and system safety 77(2002) 143- 150

[12] R.satyaprasad, Half Logistic Software Reliability Growth Model,Ph.D. Thesis,2007

Authors

K.Ramchand H Rao, received Master‘s degree in Technology with Computer

Science from Dr. M.G.R University, Chennai, Tamilnadu, India, . He is currently

working as Associate Professor and Head of the Department, in the Department of

Computer Science, A.S.N. Degree College, Tenali, which is affiliated to Acharya

Nagarjuna University. He has 18 years teaching experience and 2 years of Industry

experience at Morgan Stanly, USA as Software Analyst. He is currently pursuing

Ph.D., at Department of Computer Science and Engineering, Acharya Nagarjuna

University, Guntur, Andhra Pradesh, India. His research area is software

Engineering. He has published several papers in National & International Journals.

Dr. R. Satya Prasad received Ph.D. degree in Computer Science in the faculty of

Engineering in 2007 from Acharya Nagarjuna University, Andhra Pradesh. He

received gold medal from Acharya Nagarjuna University for his out standing

performance in Masters Degree. He is currently working as Associate Professor and

H.O.D, in the Department of Computer Science & Engineering, Acharya Nagarjuna

University. His current research is focused on Software Engineering, Software

reliability. He has published several papers in National & International Journals.

R.R.L.Kantam is professor of statistics at Acharya Nagarjuna University,Guntur-

India. He has 31 years of teaching experience in statistics at Under Graduate and

Post Graduate programs. As researcher in Statistics, he has successfully guided

many students for M.Phil and Ph.D. in statistics. He has authored more than 60

research publications appeared various statistics and computer science journals

published in India and other countries like US, UK, Germany, Prakistan, Srilanka

and Bangladesh. He has been a referee for Journal of Applied Statistics (U.K),

METRON (Italy), Pakistan Journal of Statistics (Pakistan), IAPQR – Transactions

(India), Assam Statistical Review (India) and Gujarat Statistical Review (India). He has been a special

speaker in technical sessions of a number of Seminars and Conferences. His areas of research interest are

Statistical Inference, Reliability Studies, Quality Control Methods and Actuarial Statistics. As a teacher his

present teaching areas are Probability Theory, Reliability, and Actuarial Statistics. His earlier teaching

topics include Statistical Inference, Mathematical Analysis, Operations Research, Econometrics, Statistical

Quality control, Measure theory.

