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Abstract: 

This paper proposes a simple, automatic and efficient clustering algorithm, namely, Automatic Merging for 

Optimal Clusters (AMOC) which aims to generate nearly optimal clusters for the given datasets 

automatically. The AMOC is an extension to standard k-means with a two phase iterative procedure 

combining certain validation techniques in order to find optimal clusters with automation of merging of 

clusters. Experiments on both synthetic and real data have proved that the proposed algorithm finds nearly 

optimal clustering structures in terms of number of clusters, compactness and separation. 

Keywords : Clustering, Optimal clusters, k-means, validation technique 

 

1 Introduction 

The two fundamental questions in data clustering are to find number of clusters and their 

compositions. There are many clustering algorithms to answer the latter problem, but not many 

methods for the former problem. Although a number of clustering methods have been proposed 

for the latter problem, they are facing the difficulties in meeting the requirements of automation, 

quality, simplicity and efficiency. Discovering an optimal number of clusters in a large data set is 

usually a challenging task. Cheung [20] studied a rival penalized competitive learning algorithm 

[9 -10] that has demonstrated a very good result in finding the cluster number. The algorithm is 

formulated by learning the parameters of a mixture model through the maximization of a 

weighted likelihood function. In the learning process, some initial seed centers move to the 

genuine positions of the cluster centers in a data set, and other redundant seed points will stay at 

the boundaries or outside of the clusters. Bayesian-Kullback Ying-Yang proposed a unified 

algorithm for both unsupervised and supervised learning [13], which provides a reference for 

solving the problem of selection of the cluster number. Lee and Antonsson [2] used an 

evolutionary method to dynamically cluster a data set. Sarkar,et al. [11] and Fogel et al. [8] are 

proposed an approach to dynamically cluster a data set using evolutionary programming, where 

two fitness functions are simultaneously optimized: one gives the optimal number of clusters, 

whereas the other leads to a proper identification of each cluster’s centroid. Recently Swagatam 

Das and Ajith Abraham [18] proposed an Automatic Clustering using Differential Evolution 

(ACDE) algorithm by introducing a new chromosome representation and Jain [1] explained few 

more methods to select k, the number of clusters. The majority of these methods to determine the 
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best number of clusters may not work very well in practice. The clustering algorithms are 

required to be run several times for good solution, and model-based methods, such as cross-

validation and penalized likelihood estimation, are computationally expensive.  

 

This paper proposes a simple, automatic and efficient clustering algorithm, namely, Automatic 

Merging for Optimal Clusters (AMOC) which aims to generate nearly optimal clusters for the 

given datasets automatically. The AMOC is an extension to standard k-means, which combines 

the validation techniques into the clustering process so that high quality clustering results can be 

produced. The technique is a two-phase iterative procedure. In the first phase it produces clusters 

for a large k. In the second phase, iteratively a low probability cluster is merged with its closest 

cluster using a validation technique. Experiments on both synthetic and real data sets from UCI 

prove that the proposed algorithm finds nearly optimal results in terms of compactness and 

separation. 

 

Section (2) deals with formulation of the proposed algorithm, while section (3) illustrates the 

effectiveness of the new algorithm experimenting results on synthetic, real, and micro array data 

sets. Finally concluding remarks are included in section (4).  
 

2. Automatic Merging for Optimal Clusters (AMOC) 

Let P = {P1, P2,… , Pm} be a set of m objects in which each object Pi is represented 

as[pi,1,pi,2,…pi,n] where n is the number of features. The algorithm accepts large kmax as the upper 

bound of the number of clusters and is taken to be m  by intuition [12]. It iteratively merges the 

lower probability cluster with its closest cluster according to average linkage and validates the 

merging result using Rand Index.  

Steps: 

1. Initialize kmax = m    

2. Assign kmax objects randomly to the cluster centroids 

3. Find the clusters using k-means 

4. Compute Rand index 

5. Find a cluster that has least probability and merge with its closest cluster. Recompute 

centroids, Rand index and decrement the number of clusters by one. If the newly 

computed Rand index is greater than the previous Rand index, then update Rand 

Index, number of clusters and cluster centroids with the newly computed values. 

6. If step 5 has been executed for each and every cluster, then go to step7, otherwise got 

to step5. 

7. If there is a change in number of clusters, then go to step2, otherwise stop. 
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3. Experimental Results 

To evaluate the performance of AMOC, we have tested it using both simulated and real data. The 

clustering results of AMOC are compared with these of k-means, fuzzy-kmeans, and Automatic 

clustering using Differential Evolution (ACDE) that determines optimal clusters automatically. 

The results are validated with the Rand, Adjusted Rand, DB, CS and Silhouette cluster validity 

measures and by identifying error rate using number of misclassifications.  

 

In this AMOC the choice of initial centroids were selected at random and also done as suggested 

by Arthu and Vassilvitskii [4]. The performance of the algorithm is also compared with k-

means++  [4]. 

 

The k-means and Fuzzy-kmeans algorithms are implemented with the number of clusters as equal 

to the number of classes in the ground truth. 

 

3.1 Experimental Data 

The efficiency of new algorithms are evaluated by conducting experiments on five artificial data 

sets, three real datasets down loaded from the web site UCI and two microarray data sets (two 

yeast data sets) downloaded from http://www.cs. washington.edu/homes/kayee/cluster [7].  

The real data sets used:  

 

1. Iris plants database (m = 150, n = 4, K = 3)  

2. Glass (m = 214, n = 9, K = 6) 

3. Wine (m = 178, n = 13, K = 3) 

 

The real microarray data sets used: 

 

1. The yeast cell cycle data [15] showed the fluctuation of expression levels of 

approximately 6000 genes over two cell cycles (17 time points). We used two different 

subsets of this data with independent external criteria. The first subset (the 5-phase 

criterion) consists of 384 genes whose expression levels peak at different time points 

corresponding to the five phases of cell cycle [15]. We expect clustering results to 

approximate this five class partition. Hence, we used the 384 genes with the 5- phase 

criterion as one of our data sets. 

 

2. The second subset (the MIPS criterion) consists of 237 genes corresponding to four 

categories in the MIPS database [6]. The four categories (DNA synthesis and replication, 

organization of centrosome, nitrogen and sulphur metabolism, and ribosomal proteins) 

were shown to be reflected in clusters from the yeast cell cycle data [16]. 

 

The five synthetic data sets from Np(µ, ∑) with specified mean vector and variance covariance 

matrix are as follows.   
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1. Number of elements, m=350, number of attributes, n=3, number of clusters, k =2 with  
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2.  The data set with m=400, n=3, k=4 and with  










−

−
=

1

1
1µ 








=Σ

0.65       

0  0.65
1 








=

2

2
2µ

 








=Σ

1     

0.7  1
2 









+

−
=

3

3
3µ 








=Σ

0.78       

 0   0.78
3 









+

−
=

4

6
4µ 








=Σ

0.5      

 0  0.5
4

 

3. The data set m=300, n=2, k=3 and with  
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4. The data set m=800, n=2, k=6 and with  
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5. The data set m=180, n=8, k=3 and with 
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3.2 Presentation of Results 

In this paper, while comparing the performance of AMOC with the other techniques we are 

concentrating on two major issues: 1) quality of the solution as determined by Error rate and 

cluster validity measures Rand, Adjusted Rand, DB, CS and Silhouette, 2) ability to find the 

optimal number of clusters.  Since all the algorithms produce different results in different 

individual runs, we have taken 40 independent runs of each algorithm. The Rand [19], Adjusted 

Rand, DB [5], CS [3] and Silhouette [14] metrics values and the overall error rate of the mean-of-

run solutions provided by the algorithms over the 10 datasets have been provided in Table-1. The 

table also shows the mean number of classes determined by each algorithm except k-means and 

fuzzy-k. All the results presented in this table are averages over 40 independent runs of each 

algorithm. The minimum and maximum error rates those found in 40 independent runs of each 

algorithm on each dataset are also tabulated in Table-1.  

 

The above observations are presented graphically in the following figures. Figure1. to Figure2 

represent the number of clusters identified by AMOC and ACDE in 40 independent runs. The 

figures demonstrate that AMOC is performing well when compared to ACDE in determining the 

clusters. Figure3 represent error rates obtained in 40 independent runs by AMOC and ACDE. 

Figures 4 to Figure5 are the clusters and their centroids obtained during the execution of the 

AMOC, in each iteration when choice of the initial k is 9.  

 

 
Table-1:Validity measures along with error rates 

Dataset Algorithm No. of 

clusters, k 

Mean values of Cluster Validity 

Measures 

Error rate 

 

i/p 

k 

o/p k ARI RI SIL DB CS Mean Least Maximu

m 

Synthetic

1 

k-means 2 2 

0.92 0.96 

0.83

9 

0.46

7 

0.645 

0.236 1.714 2.286 
k-means++ 

0.925 

0.96

2 

0.83

9 

0.46

6 

0.567 

1.914 1.714 2.286 
fuzk 

0.899 0.95 

0.83

9 

0.46

8 

0.52 

2.571 2.571 2.571 

AMOC(rand) 

19 

2 0.92 0.96 

0.83

9 

0.46

7 0.749 2.029 1.714 2.286 

AMOC(kmp

p) 2 0.925 

0.96

3 

0.83

9 

0.46

6 0.749 1.905 1.714 2.286 

ACDE 3.05 0.85 

0.92

5 

0.64

3 

0.77

2 1.348 51.56 0 96 

Synthetic

2 

k-means 4 4 

0.821 

0.92

7 

0.71

8 0.58 

1.178 

19.1 2.4 67 
k-means++ 

0.883 

0.95

3 

0.77

6 

0.51

9 

1.21 

7.16 2.4 59.8 
fuzk 

0.944 

0.97

9 

0.79

1 

0.48

4 

0.931 2.2 

2.2 2.2 

AMOC(rand) 

22 

3.05 0.694 

0.86

7 

0.73

8 

0.55

9 1.067 46.5 2.4 80.2 

AMOC(kmp

p) 3.8 0.885 

0.95

3 

0.78

8 

0.49

9 0.946 8.79 2.4 34.4 

ACDE 5.35 0.885 

0.95

7 0.68 

0.67

4 1.321 58.89 2.4 96.2 

Synthetic

3 

k-means 3 3 

0.957 0.98 

0.81

3 

0.50

9 

0.87 2.242 

1 1 
k-means++ 

0.97 

0.98

7 

0.82

3 

0.76

1 

0.92 1 

1 50.67 
fuzk 

0.97 

0.98

7 

0.82

3 

0.5 0.96 1 

1 1 
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AMOC(rand) 

17 

2.9 0.93 

0.96

6 

0.80

5 0.52 0.791 7.6 1 67 

AMOC(kmp

p) 2.95 0.95 

0.97

6 

0.81

4 

0.50

4 0.78 4.317 1 67.33 

ACDE 4 0.472 

0.77

7 

0.75

4 

0.46

1  83.59 50 87.5 

Synthetic

4 

k-means 6 6 

0.816 

0.94

1 0.82 

0.40

7 

0.72 51.27 

0 0 
k-means++ 

0.958 

0.98

8 

0.93

2 

0.22

2 

0.62 

10.96 0 92.63 
fuzk 

0.98 

0.99

4 

0.95

3 

0.18

3 

0.45 

8.738 0 94.5 

AMOC(rand) 

28 

2.875 0.444 

0.71

9 

0.69

6 0.6 0.682 88.28 87.5 100 

AMOC(kmp

p) 5.7 0.969 

0.99

1 

0.95

3 

0.18

8 0.244 25.31 0 100 

ACDE 7.9 0.979 

0.99

4 

0.87

8 

0.30

8 0.359 53.21 0 93.88 

Synthetic

5 

k-means 3 3 

0.197 0.62 

0.39

6 

1.17

6 

1.78 

53.9 51.67 56.11 
k-means++ 

0.201 

0.62

2 

0.39

8 

1.13

3 

1.678 

54.42 51.67 56.11 
fuzk 

0.256 0.65 

0.36

9 

1.30

1 

4.34 

48.61 46.67 48.89 

AMOC(rand) 

14 

2 0.267 

0.63

3 

0.51

5 

1.10

2 1.873 69.94 69.44 70 

AMOC(kmp

p) 2.3 0.244 

0.62

7 

0.48

2 

1.11

8 1.854 65.22 45 70 

ACDE 4.4 0.596 

0.80

5 

0.07

4 

1.45

3 4.061 71.31 17.78 92.22 

Iris k-means 3 3 

0.774 

0.89

2 

0.80

4 

0.46

3 

0.607 

15.77 4 51.33 
k-means++ 

0.796 

0.90

4 

0.80

4 

0.46

1 

0.712 

13.37 4 51.33 
fuzk 

0.788 

0.89

9 

0.80

3 0.46 

0.658 

15.33 4 56 

AMOC(rand) 

12 

2.133 0.61 

0.79

9 

0.93

2 

0.25

9 0.429 29.42 4 33.33 

AMOC(kmp

p) 2.533 0.737 

0.86

9 

0.87

4 

0.33

7 0.512 17.69 4 33.33 

ACDE 3.15 0.887 0.95 

0.78

4 

0.43

5 0.706 10.17 3.333 62.67 

Wine k-means 3 3 

0.295 

0.67

5 

0.69

4 

0.56

9 

0.612 

34.58 30.34 42.7 
k-means++ 

0.305 

0.68

1 

0.69

4 

0.56

2 

0.678 

33.54 30.34 42.7 
fuzk 

0.34 0.7 

0.69

6 

0.56

6 

0.753 

30.34 29.78 30.9 

AMOC(rand) 

13 

2 0.197 

0.59

3 

0.71

4 

0.64

4 1.025 41.01 30.34 41.01 

AMOC(kmp

p) 2 0.197 

0.59

3 

0.71

4 

0.64

4 1.025 41.01 41.01 41.01 

ACDE 4.45 0.367 

0.72

3 

0.37

3 

0.55

5 1.626 52.89 41.01 69.66 

Glass k-means 6 6 

0.245 

0.69

1 

0.50

7 

0.90

1 

0.967 

55.86 28.65 67.29 
k-means++ 

0.259 

0.68

3 

0.54

8 

0.87

1 

1.523 

56.1 44.86 64.95 
fuzk 

0.241 0.72 

0.29

3 

0.99

8 

1.613 

62.29 46.73 66.82 

AMOC(rand) 

15 

3.333 0.231 

0.61

8 

0.61

8 0.96 1.808 68.75 48.13 76.64 

AMOC(kmp

p) 4.067 0.25 

0.63

5 

0.65

5 

0.81

6 1.414 66.42 51.21 76.17 

ACDE 5.5 0.309 0.71 0.33 1.14 2.868 54.35 57.48 86.45 



International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol.1, No.4, August 2011 

139 

 

2 8 6 

Yeast1 k-means 4 4 

0.497 

0.76

5 

0.46

6 1.5 

1.439 

35.74 37.38 80.17 
k-means++ 

0.465 

0.75

1 

0.42

5 

1.52

8 

1.678 

37.49 35.02 42.62 
fuzk 

0.43 

0.73

4 0.37 

2.01

2 

1.679 

39.18 35.02 80.59 

AMOC(rand) 

15 

3 0.476 

0.74

9 

0.44

3 

1.55

8 1.609 79.35 37.55 80.59 

AMOC(kmp

p) 4.867 0.471 

0.74

9 

0.42

9 

1.54

2 1.643 37.25 38.06 80.59 

ACDE 5.55 0.594 

0.80

6 

0.34

8 

2.31

4 2.669 81.86 35.44 97.47 

Yeast2 k-means 5 5 

0.447 

0.80

3 

0.43

8 

1.30

7 

1.721 

38.35 24.47 57.03 
k-means++ 

0.436 

0.80

1 

0.42

1 

1.29

2 

1.521 

40 27.08 57.03 
fuzk 

0.421 

0.79

9 

0.37

9 

1.44

3 

1.341 

35.73 26.3 53.65 

AMOC(rand) 

20 

3.667 0.458 

0.78

8 

0.50

1 

1.14

8 1.349 55.14 27.86 85.16 

AMOC(kmp

p) 4.4 0.476 

0.80

5 

0.49

2 

1.15

5 1.391 38.21 26.56 44.53 

ACDE 6.225 0.537 

0.83

8 

0.36

3 

1.43

8 2.326 44.95 23.18 86.46 

 

Figure1. Number of clusters for Yeast2 

 

 

 

 

 

 

 

 
 

Figure2. Number of clusters of Synthetic2 data set 
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Figure2. Number of clusters of Synthetic2 data set 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure3. Error rates obtained for Iris data set 

 

Figure3. Error rates obtained for Iris data set 
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Figure 4.The results 

obtained by AMOC for 

the Synthetic2 data set 

when initial k=9. 

Starting with initial 

clusters  to final clusters 

and their obtained 

centers. The obtained 

centers are marked with 

‘ ‘ whereas original 

centers are marked in red 

color triangles 
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Table 2.error rates of various algorithms 

Data set AMOC(rand) AMOC(kmpp) SPSS k-means kmpp Fuzzy-k ACDE 

synthetic1 2.209 1.905 1.714 2.236 1.914 2.571 51.56 

synthetic2 46.5 8.79 2.4  19.1 7.16 2.2 58.89 

Synthetic3 7.6 4.317 1 2.242 1 1 83.59 

Synthetic4 88.28 25.31 0 51.27 10.96 8.738 53.21 

synthetic5 69.94 65.22 52.22 53.9 54.42 48.61 71.31 

Iris 29.42 17.69 50.67 15.77 13.37 15.33 10.17 

Wine 41.01 41.01 30.34 34.58 33.54 30.34 52.89 

Glass 68.75 66.42 45.79 55.86 56.1 62.29 54.35 

Yeast1 79.35 37.25 35.44 35.74 37.49 39.18 81.86 

Yeast2 55.14 38.21 43.23 38.35 40 35.73 44.95 

 

Comments on the results of AMOC 

The errors rates obtained from various algorithms vs data are presented in table 2. 

• From the above table it is observed that the AMOC either producing best clusters than 

ACDE or performing equally well 

• The results of AMOC show that average error rates is equally good when compared to 

those of k-means, k-means++, fuzzyk and SPSS 

• The results of AMOC show that they are far better when compared to ACDE in most of 

the case.  

• The best error rate over 40 runs of AMOC is very much comparable to the existing 

algorithms mentioned in the above observations. 

• The maximum error rate over 40 runs of AMOC appears to be the least when compared 

to those of existing algorithms. 

• The quality of AMOC in terms of Rand index is 70%. 

Figure5.The results obtained by AMOC for the 

Iris data set when initial k=9. Starting with 

initial clusters  to final clusters and their 

obtained centers. The obtained centers are 

marked with ‘ ‘ . 
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• Recently Sudhakar Jonnalagadda and Rajagopalan Srinivasan [17] developed a method 

that determined 5 clusters from yeast2 data set where as the almost all existing methods 

finds as 4. The proposed AMOC is also find 5 clusters from yeast2 data 

 

Note: Results of CS, HI, ARI, etc., are very much in agreement with above all observations in the 

performance of AMOC, hence detailed note with respect to them is not provided to avoid 

duplication. 

 

5. Conclusion 
 
AMOC is ideally free from parameter. Though the AMOC require possible large k as input, the 

input number of clusters does not affect the output number of clusters. The experimental results 

have shown the performance of AMOC in finding optimal clusters automatically. 
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