
International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol.5, No.2, April 2015

DOI : 10.5121/ijcsea.2015.5201 1

A SOFTWARE TOOL FOR LIVE-LOCK AVOIDANCE IN

SYSTEMS MODELLED USING A CLASS OF PETRI

NETS

E. Salimi

1
, N. Somnath

1
and R.S. Sreenivas

1

1
Department of Industrial and Enterprise Systems Engineering, University of Illinois at

Urbana-Champaign, Urbana, IL, USA

ABSTRACT

If a manufacturing system enters into a state where a task enters into a state of suspended animation for

perpetuity, we say it is in a livelocked state. In contrast, all tasks of the system remain suspended for

perpetuity in a deadlocked state of the system. A livelock-free manufacturing system can never experience

deadlocks, but the converse is not necessarily true. A livelock-prone manufacturing system can be

regulated using a supervisory policy such that the resulting supervised system is livelock-free. If a liveness

enforcing supervisory policy (LESP) prevents the occurrence of an event at given state of the

manufacturing system, and every other LESP, irrespective of the implementation paradigm, prescribes the

same control for that state, we say the original LESP is minimally restrictive.

This paper is about two enhancements to an existing software tool that synthesizes the minimally restrictive

LESP for a manufacturing system modelled using a class of weighted Petri nets (PNs). The first

enhancement is about broadening the scope of the software tool to a larger class of PNs. The second

enhancement is about improving the running time of the software tool using a property identified in this

paper.

We identify a class, ℋ, of general Petri net (PN) structures where the existence of a liveness enforcing

supervisory policy (LESP) for an instance of this class, initialized at a marking, is sufficient to infer the

existence of an LESP when the same instance is initialized at a larger marking. As a consequence, the

existence of an LESP for the PN that results when a member of this class is initialized with a marking, is

decidable. Additionally, the maximally permissive LESP, when it exists, can be synthesized using a software

tool described in an earlier paper. We also highlight a property that plays a critical role in the speed of

convergence of the iterative procedure for the synthesis of the minimally restrictive LESP, when it exits, for

any instance of ℋ that uses the aforementioned software package.

KEYWORDS

Manufacturing Systems, Livelock Avoidance &Petri Nets

1. INTRODUCTION

Manufacturing systems belong to a class of systems called Discrete-Event/Discrete-State (DEDS)

systems. The (discrete-)states of these systems have a logical, as opposed to numerical,

interpretation. At each state, there are potential (discrete-)events that can occur, the occurrence of

any one of them would change the state of the system, which then results in a new set of potential

events, and this process can be repeated as often as necessary. DEDS systems are regulated by a

supervisory policy, which determines which event is to be permitted at each state, in such a

International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol.5, No.2, April 2015

2

manner that some behavioural specification is satisfied. Our focus is on livelock-avoidance. A

manufacturing system is in a livelocked-state if a task enters into a state of suspended animation

for perpetuity. If all tasks in the manufacturing system are prevented from progressing to

completion, we say the manufacturing system has entered a deadlocked-state (cf. [1], for

example). A livelock-free manufacturing system does not have deadlocked-states, but a deadlock-

free manufacturing system can still experience livelocks. Livelock freedom is harder to achieve,

compared to deadlock freedom.

Petri nets (PNs) have been extensively used to model manufacturing systems (cf. [2,3], for

example). In this paper we consider the synthesis of liveness enforcing supervisory policies

(LESPs) in PN models of manufacturing systems. The results in the literature range from heuristic

procedures to provably correct methods that can synthesize LESPs for a variety of PN classes.

Since the existence of an LESP in an arbitrary PN instance is not even semi-decidable, it is

imperative that any provably correct scheme restrictsits attention to a sub-class of PN structures.

This paper identifies one such a class, ℋ, which strictly includes all other classes of PNs for

which a LESP can be automatically synthesized (cf. [4–6], for example). Additionally, the

software tool identified in reference [7] can be used to synthesize the minimally restrictive LESP,

when it exists, for any member of the class ℋ, thus broadening its scope. We also identify a

characterization of the minimally restrictive LESP for any instance of ℋ, which can be used to

improve the running time of the aforementioned software tool.

This paper is organized as follows – section 2 introduces the notations and definitions used in this

paper. This section also reviews the supervisory control paradigm for PN models, along with a

brief review of the relevant results from the literature. The main results are presented in section 3.

Section 4 presents the conclusions.

2. NOTATIONS AND DEFINITIONS AND SOME PRELIMINARY OBSERVATIONS
 ℕ	(ℕ�)denotes the set of non-negative (positive) integers. The cardinality of a set A is

represented as card(A). A Petri net (PN) structure � = (, �, �,
) is an ordered 4-tuple,

where	 = ���⋯���is a set of nplaces, � = ���⋯��� is a collection ofmtransitions,Φ ⊆ (Π ×�) ∪ (� × Π)isasetofarcs,andΓ:Φ → ℕ�isthe weight associated with each arc. The weight of an

arc is represented by an integer that is placed alongside the arc. If an arc has a unitary weight, it is

not represented in its graphical representation in this paper.

If all arcs of a PN are unitary, it is said to be an ordinary PN, otherwise it is a general PN. The

initial marking of a PN structure N is a function ��: Π → ℕ, which identifies the number of

tokens in each place. A Petri net (PN), N(m
0
), is a PN structure N together with its initial marking

m
0
.

 �∗represents the set of all finite-length strings of transitions. For ! ∈ �∗, we use#(!) to denote

the Parikh vector of σ. That is, the ith entry, #$(!), corresponds to the number of occurrences of

transition ti in σ.

Let %• ≔ �(|((, %) ∈ Φ� and %• ≔ �(|(%, () ∈ Φ�. If ∀� ∈ �,• �+(�) ≥ Γ((�, �))for some � ∈ � and some marking mi, then � ∈ � is said to be enabled at marking mi. The set of enabled

transitions at marking mi is denoted by the symbol Te(N, m
i
). An enabled transition � ∈ �-(�,�+)

can fire, which changes the marking m
i
 to m

i+1
 according to �+��(�) = �+(�) − Γ(�, �) +Γ(�, �).

Asetofmarkingsℳ ⊆ ℕ�issaidtoberight-closed[8]if((�� ∈ ℳ)⋀(�2 ≥ ��) ⇒ (�2 ∈ ℳ)),
and is uniquely defined by its finite set of minimal-elements.

International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol.5, No.2, April 2015

3

When the marking is interpreted as a nonnegative integer-valued vector, it is useful to definethe

input matrix IN (output matrix OUT) as an n×m matrix, where INi, j (OUTi,j) equals Γ((pi,tj))

(Γ((pi,tj))) if pi∈•tj, (pi∈t•
j) and is zero-valued otherwise. The incidence matrix C of the PN N is an

n×m matrix, where C = OUT−IN.

2.1. Supervisory Control of PNs

Under this paradigm, the set of transitions in the PN is partitioned into a set of

controllabletransitions (�4 ⊆ �)and a set of uncontrollable transitions (�5 ⊆ �). Thecontrollable

(uncontrollable) transitions are represented as filled (unfilled) boxes ingraphical representation of

PNs.

A supervisory policy ℘:ℕ� × � → �0,1�, is a function that returns a 0 or 1for each transition and

each reachable marking. Transition �	 ∈ �is control-enabled(state-enabled) if ℘(�, �) = 1

(� ∈ �-(�,�)) for some marking m. A transition that isstate- and control-enabled can fire, which

results in a new marking as indicated in theprevious section. Since uncontrollable transitions

cannot be prevented from firing bythe supervisory policy, we require the following condition to

be true of all supervisorypolicies: ∀� ∈ ℕ� , ℘(�, �) = 1, if � ∈ �5.

A valid firing string! = ���2 ⋯�9 ∈ �∗for a marking m
isatisfies the followingconditions:

(1)�� ∈ �-:�,;+<,℘:;+ , ��< = 1,and (2) for = ∈ �1,2,⋯ ? − 1�the firingof transition tj produces

a markingm
i+j

,�@�� ∈ �-:�,;+�@<, and ℘:;+�@ , �@��< = 1.

 ℜ(�,��, ℘)denotes the set of markings that are reachable from m0 under thesupervision of ℘in

N. We use �+ B→�@to denote that mjresults from the firing of! ∈ �∗from mi.

A transition tk is live under the supervision of ℘ if ∀�+ ∈ ℜ(�,��, ℘), ∃�@ ∈ ℜ:�,�+ , ℘<such

that�9 ∈ �-:�,;@< and ℘:;@ , �9< = 1. If all transitions in N(m0)are live under ℘, then it is a

liveness enforcing supervisory policy (LESP) for N(m0).The policy ℘ is said to be minimally

restrictive if for every LESP℘D:ℕ� × � → �0,1�, the following condition holds∀�+ ∈ ℕ�, ∀	� ∈�,℘:;+ , �< ≥ ℘D:;+ , �<.

There is an LESP for N(m0)if and only if �� ∈ ∆(F),
whereΔ(�) = ��� ∈ ℕ4HIJ(K)|∃	LM	NOPQ	RST	�(��)� is the set of initial markings m

0 for

which there is aLESP for N(m
0
). It follows that Δ(�) is control invariant (cf. [9,10]) with respect

toN; that is, if �� ∈ Δ(�), �5 ∈ �5 ∩ �-(�,��) and �� VW→�2in N, then �2 ∈Δ(�).Equivalently, only the firing of a controllable transition at any marking in Δ(�) canresult in

a new marking that is not in Δ(�).

If ℘ is an LESP for N(m0), then ℜ(�,��, ℘) ⊆ ∆(�). Additionally, the LESP℘∗, that prevents

the firing of a controllable transition at any marking when its firingwould result in a new marking

that is not in ∆(F), is the minimally restrictive LESPfor N(m0). That is, there can be no other

LESP, independent of the implementationparadigm, that can be better than ℘∗.

Neither the existence, nor the non-existence, of an LESP for an arbitrary PN issemi-decidable; the

existence of an LESP is decidable if all transitions in the PNare controllable, or if the PN

structure belongs to specific classes identified in theliterature [4–6,11]. The process of deciding

the existence of an LESP in an arbitraryinstance from these classes is NP-hard.

International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol.5, No.2, April 2015

4

2.2. Review of Relevant Prior Work

Monitors were introduced into supervisory control of PNS by Giua [12], and wereused by Moody

et al. [13], and Iordache et al. [14] to derive sufficient conditions forthe existence of certain

classes of PNs. Sufficient conditions for minimally restrictive,closed-loop liveness of a class

Marked Graph PNs supervised by monitors were derivedby Basile et al. [15]. There are necessary

and sufficient conditions for classes ofPNs known as S
3
PR and S

4
PR nets that can be used to

synthesize liveness enforcingenhancements in instances of these classes [16,17]. Reveliotis et al.

[18] and Ghaffariet al. [19] used the theory of regions to identify minimally restrictive LESPs

forResource Allocation Systems. Marchetti et al. [20] presented a polynomial time sufficient

condition for liveness, for the class of Unitary Weighted Event Graphs. Ferrariniet al [21]

compare the performance of a selection of deadlock avoidance policies inPN models of flexible

manufacturing systems. Chen et al. [22] use Integer LinearProgramming to synthesize invariant

based monitors that enforce liveness in a classof PNs. Hu et al. [23,24] use a set of inequalities to

characterize insufficiently markedsiphons that is subsequently used to develop an algebraic

LESP-synthesis procedure.Li et al [25] develop an iterative siphon-based control scheme for

preventing deadlocksin PN models of manufacturing systems using a mixed integer

programmingapproach involving what are known as necessary siphons.

3. Main Results

Let,Ω(�) = ��̂ ∈ �| �• ∩ �̂• ≠ ∅�, denote the set of transitions that share a common inputplace

with � ∈ �for a PN structure � = (, �, �,
). Consequently,(�� ∈ Ω(�2)) ⇒ (�2 ∈ Ω(��)). Let ℋ\ denote a class of PN structures where the following property is true: ∀� ∈ ∆(�), ∀�5 ∈ �5 , ∀� ∈ 	Ω(�5), :� ∈ �-(�,�)< ⇒ :�5 ∈ �-(�,�)<.						(1)
That is, ℋ\ is a class of PN structures where, if a transition t is state-enabled, then all

uncontrollable transitions that share a common input place with t are also state enabledat any

marking in ∆(�). The following lemma finds use in the proof of theorem2.

Lemma 1: (Lemma 5.1, [5]) Let ℘ be a LESP for N(m0), where �� ∈ ∆(�), for aPN structure

� ∈ ℋ\ . Suppose �� B→�+ under the supervision of ℘, and�D � BD→�D @ without supervision in N,

where the number of occurrences of each controllabletransition in ! and !̂ are identical, and�D � ≥
��. There exists strings !�, !̂� ∈ �∗such that (1) �� BB_àb�9under the supervision of ℘ in N,

(2)�D � BDBD_àb�D c withoutsupervision in N, and (3) #(!!�) = #(!̂!̂�). Consequently,�D c ≥ �D 9.

Proof: Let �d5 ⊆ �5denote the set of uncontrollable transitions that appear more oftenin !̂as

compared to !. If �d5 = ∅, then!̂ = !	 and the result holds trivially. If �d5 ≠ ∅,,there is a string!�

such �+ B_→�+�� under the supervision of the LESP ℘ suchthat (1) at least one member of �5 ∈ �d5 is state-enabled at�+��, and (2) none ofthe members of �d5 are state-enabled at any

marking that results from the firing of aproper prefix of !� at�+. It follows that �D e B_→�D @��,

without any supervision, in N.If this were not the case, there must be a proper prefix of !�, of the

form !f��, suchthat �D e Bg→�g in N, but�� ∉ �-(�,�g). Additionally, �� ∈ Ω(�5̅)for some �5̅ ∈ �d .

Since� ∈ ℋ\ , and �g ∈ ∆(�), it follows that �5 ∈ �-(�,�g), which contradicts requirement (2).

Suppose �+ B_jWàb�@�� under ℘ in N, and �D @ B_→�D @�� without supervision inN. We let �@ ←�@��,�D @ ← �D @��, ! ← 	!!��5,and!̂ ← !!��5. The result followsby repeating the above

construction as often as necessary till �d5 = l. ♣

International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol.5, No.2, April 2015

5

The following theorem notes that ∆(�) is right-closed if � ∈ ℋ\ .

Theorem 2:m:�� ∈ ∆(�)<⋀(�D � ≥ ��)n ⇒ :�D � ∈ ∆(�)<,if� ∈ ℋ\ .

Proof: Since �� ∈ ∆(�), there is an LESP ℘ for N(m0). Following reference [5],we define an

LESP ℘D for N(�D �) as follows (1)∀� ∈ �,℘D(�D �, �) = ℘(��, �), (2) if�D � BD→�D + under ℘D , then

(2a) ∀�5 ∈ �5, ℘D:�D + , �5< = 1, and (2b) ∀�4 ∈ �4, :℘D:�D + , �4< = 1< ⟺ (∃! ∈ �∗,suchthat

�� B→�9under ℘, and the number of occurrences of eachcontrollable transition in ! and !̂�4 are

identical).

If �D � BD→�D + under ℘D , then ∃! ∈ �∗such that �� B→�@under ℘, and the numberof occurrences of

each controllable transition in ! and !̂ are identical. Using lemma1, and the definition of ℘D , we

know ∃!̂�, !� ∈ �∗ such that �D � BDBD_àb�D +��under ℘D ,�� BB_àb�@��under ℘, and�D +�� ≥ �@��.

Consequently, for any !2 ∈ �∗such that�@�� Bp→�@�2under ℘, we have �D +�� Bp→�D +�2 under ℘D as

well. Since ℘ is an LESPfor N(m0), it follows that℘D is an LESP for N(�D �). ♣

Lemma 1 and theorem 2 together imply the following theorem.

Theorem 3:∆(�) is right-closed if � ∈ ℋ\ .

The above condition is not necessary for the right-closure of ∆(�). For instance,∆(��)	is right-

closed for the general PN �� shown in figure 1(a), but�� ∉ ℋ\ . Specifically,∆(��) is identified by

the inequality (1 1 1 1 1)m≥ 1, and m = (1 0 000)T∈ ∆(��), �2 ∈ �5,�q ∈ �-(��,�), but�2 ∉�-(��,�).

There is an LESP for the PN N(m
0
)if and only if�� ∈ ∆(�), and the existence ofan LESP is

undecidable for a general PN (cf. corollary 5.2, [11]). This would meanthat the set ∆(�) cannot

be computed for an arbitrary PN structure N. To overcome this limitation, we modify the

requirement of equation 1 as

 ∀� ∈ ℕ� , ∀�5 ∈ �5, ∀� ∈ 	Ω(�5), :� ∈ �-(�,�)< ⇒ :�5 ∈ �-(�,�)<								(2)

This requirement defines a class of PNs, which we denote asℋ(⊆ ℋ\), and fromtheorem 3, we

conclude ∆(�)is right-closed for any� ∈ ℋ.

Theorem 4: A PN structure � = (, �, �,
) belongs to the class ℋ if and only if∀� ∈ Π, ∀�5 ∈�• ∩ �5,	

rΓ(�, �5) = stM� ∈ �•Γ(�, �)u ∧ (∀� ∈ 	Ω(�5), �5• ⊆ �•).

Proof:(If) Suppose, � ∈ �-(�,�) for� ∈ ℕ�, and∃�5 ∈ 	Ω(�) ∩ �5(⇒ � ∈ 	Ω(�5)).Since �5• ⊆ �• and∀� ∈ �5• , Γ(�, �5) = stMV∈w•Γ(�, �), it follows that�5 ∈ �-(�,�).

(Only If) We will show that the violation of requirement in the statement of thetheorem for a PN

structure N would imply that� ∉ ℋ.Suppose ∃� ∈ Π, ∃�5 ∈ �• ∩ �5 such that either

1. Γ(�, �5) > stMV∈w•Γ(�, �), or

International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol.5, No.2, April 2015

2. ∃� ∈ Ω(�5), �5• − �• ≠

In each of these cases we construct a marking �-(�,�), which leads to the conclusion that

For the first-case, the marking m

tokens in the input places of any transition

result in�̂ ∈ �-(�,�) and �5 ∉ �

Similarly, for the second-case, the marking

that� ∈ �-(�,�), while ensuring that the places in � ∈ �-(�,�) and �5 ∉ �-(�,�)
♣

There is an O(n
2
m

2
) algorithm that decides if an

where M = yLTz()and m = card(T)

results in reference [5] implies that the existenceof an LESP for

the software package described inreference [7] can be used to compute the minimally restrictive

LESP for N(m0), whenit exists. As noted in the introduction section, each decidable class of PN

structuresidentified in references [4

PN structure N2 shown in figure 1(b) is a member of

theorem 4, and it does not belong to any of the classes of structuresidentified in references [4

Additionally,

 min:∆(�2)< = �(0	0	0	1	
(0	1	2	0	1)~ , (2	1

There is an LESP for �2(�2�)if and only if

Figure 1. (a) The PN structure ��
figure1, [4]). (b) The PN structure N

4(cf. figure 2a, [6]). (c) The PN structure ℕ�|(�(��) + �(�2) + 	�(�q) + �

International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol.5, No.2, April 2015

≠ ∅

In each of these cases we construct a marking � ∈ ℕ� such that ∃� ∈ Ω(�5) ∩ �-(�
, which leads to the conclusion that� ∉ ℋ.

m places exactly (stMV∈w•Γ(�, �))-many tokensin p, and su

ens in the input places of any transition�̂ ∈ Ω(�5)such thatΓ(�, �̂) = stMV∈w•Γ(
�-(�,�).

case, the marking mplaces sufficient tokens in the inputplaces of

le ensuring that the places in (�5• − �)• remain empty. Consequently,).

algorithm that decides if an arbitrary PN structure belongs to the class

m = card(T). The right-closure of ∆(�)for any � ∈ ℋ, along with the

results in reference [5] implies that the existenceof an LESP for N(m0) is decidable.

the software package described inreference [7] can be used to compute the minimally restrictive

, whenit exists. As noted in the introduction section, each decidable class of PN

identified in references [4–6] are strictly contained in the class ℋ. As an illustration,

shown in figure 1(b) is a member of ℋ as it meets the structuralrequirements of

theorem 4, and it does not belong to any of the classes of structuresidentified in references [4

	0)~ , (1	0	1	0	2)~ , (0	0	2	0	2)~ , (2	0	0	0	2)~ , (1	1	1	
1	0	0	1)~ , (0	2	2	0	0)~ , (1	2	1	0	0)~ , (2	2	0	0	0)~�

if and only if�2� ∈ ∆(�2).

� is not a member of the class ℋ\ . However, ∆(��) is right

N2is a member of ℋ as it meets the structural requirements of theorem

4(cf. figure 2a, [6]). (c) The PN structure N3 is not a member of the class ℋ, and ∆�(��) ≥ 1) ∨ (�(��)��J2 = 1)�is not right-closed.

International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol.5, No.2, April 2015

6

(�,�) and�5 ∉

, and sufficient (�, �)that will

cient tokens in the inputplaces of t such

Consequently,

to the class ℋ,

, along with the

is decidable. Furthermore,

the software package described inreference [7] can be used to compute the minimally restrictive

, whenit exists. As noted in the introduction section, each decidable class of PN

. As an illustration, the

as it meets the structuralrequirements of

theorem 4, and it does not belong to any of the classes of structuresidentified in references [4–6].

	0	1)~ ,

is right-closed (cf.

as it meets the structural requirements of theorem ∆(�q) = �� ∈

International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol.5, No.2, April 2015

7

A transition� ∈ � is said to be a choice-transition (resp. non-choice transition) if (�•)• ≠ ���
(resp. (�•)• = ���). In reference [26] it is shown that the minimally restrictive LESP for a class of

ordinary PNs called Free-choice PNs does not control-disable a non-choice (controllable)

transition. The following result shows that a similar observation holds for any minimally

restrictive LESP for N(m0) where � ∈ ℋ.

Theorem 5: [26] Suppose �� ∈ ∆(�) for a PN N(m0), where � ∈ ℋ, then theminimally

restrictive LESP ℘∗ for N(m0) does not disable any controllable transition�4 ∈ �4 that satisfies the

requirement (�4•)• = ��4�.

Proof: (Sketch) Suppose ∃�� ∈ ℜ(�,��, ℘∗):⊆ ∆(�)<, ∃�2 ∈ ℜ(�,��), such that�� V�→�2

in N for some �4 ∈ �� that satisfies the requirement (�4•)• = ��4�. We willshow that

1. ∃�� ∈ �∗such that �2 ��→�� in N, where �� ∈ ∆(�).
2. Additionally, if �� = �����2,�2 �� _b̀�D � ��pb̀�,� and�D � VW→�D 2 in N for some�5 ∈ �5, then

∃�D ∈ �∗, ∃�D q ∈ ℜ(�,�D 2), such that�D � VW→�D 2 �D→�D qand�D q ∈ ∆(�).
Following the repeated application of the above observation, we conclude that�2 ∈ ∆(�).

Since ℘∗ is an LESP, ∃�� ∈ (� − ��4�)∗, and�� �_b̀�q V�→�� in N underthe supervision of℘∗.
Since(�4•)• = ��4� , it follows that �2 �_b̀��in N, and���,�q,��� ⊆ ∆(�)(cf. figure 2(a)).

Suppose�� = �2�q,�2 �pb̀�� ��b̀��,and �5 ∈ �5 such that�� VW→���. Also,∃�2(∈ ∆(�)) such

that�� �pb̀��. There aretwo cases to consider – (i) �5 ∈ �-(�,��), and (ii) �5 ∉ �-(�,��).

In the first case, ∃��(∈ ∆(�)) such that �� VW→�� (cf. figure 2(b)). Since ℘∗ isan LESP,

∃�� ∈ (� − ��4�)∗, ∃��,�� ∈ ∆(�),such that �� ��b̀�� V�→��. Since (�4•)• = ��4�, we have

��� ��b̀��, where�� ∈ ∆(�).

For the second case where �5 ∉ �-(�,��), since �5 ∈ �-(�,��), it follows that∃� ∈ Π such

that�(�4, �), (�, �5)� ⊆ Φ, and the prior-firing of �4 is necessary to place sufficient tokens in � ∈ Π, for �5 to be state-enabled at �� (cf. figure 2(c)). Since� ∈ ℋ, it follows that none of the

transitions in Ω(�5) can fire at any marking thatis reachable in the segment identified by

�� �_b̀�q. Consequently, �5 ∈ �-(�,��),and �� VW→��� under the supervision of ℘∗, where

��� ∈ ∆(�). Consequently,��� ��b̀���. ♣

Theorem 5 does not hold for general PN structures. The PN structure �q shownin figure 1(c) does

not belong to the class ℋ. This is becauseminV∈w�•Γ(��, �) = 1,while Γ(��, ��) = 2, and�� ∈ ��• ∩�5. dditionally, Δ(�q) = �� ∈ ℕ�|(�(��) + �(�2) +�(�q) + �(��) ≥ 1) ∨ (�(��)��J2 =1)�, which is not right-closed. Theminimally restrictive LESP for�q()for any �q� ∈ Δ(�q)
control-disables a controllabletransition at a marking in Δ(�q) only if its firing results in a new

marking thatis not in Δ(�q). The minimally restrictive LESP would control-disable the non-

choicetransition �2 ∈ �4 at the marking(0	1	0	0	1)~ ∈ Δ(�q).

As a consequence of theorem 5, without loss of generality, we can assume all non-choice

transitions are uncontrollable, even when they are not, for any instance ofthe class of PN

structures ℋ. This is formally stated in the following theorem.

International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol.5, No.2, April 2015

Figure 2. A graphical illustration used in the proof of theorem 5.

Theorem 6: Let � = (, �, �,
transitions is partitioned into the set of uncontrollable transitions �4 (i.e. � = �4 ∪ �5and�5 ∩ �4
structurally identical to N, but the set of transitions in

uncontrollable- and controllable-

and�d4 = � − �d5. Then ∆(�) = ∆

Proof: Since�d4 ⊆ �4, it follows that

bycontradiction. Suppose,∆:��< ⊂
is, ∃�� ∈ ∆(�), ∃�̂5 ∈ �d5such that

with respect to N, it must be that

that�2 ∈ ∆(�), which establishes the result.

As an illustration, the non-choice, controllable transition

can be considered to be uncontrollable, which e

controllable transitions. There is an LESP for a PN

only if the PN is live. This leads to the observationthat the PN

International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol.5, No.2, April 2015

Figure 2. A graphical illustration used in the proof of theorem 5.

,
) be a PN structure from the familyℋ, where the set

transitions is partitioned into the set of uncontrollable transitions �5, and controllabletransitions

= ∅). Suppose ��is another memberof the family

, but the set of transitions in �� arepartitioned into a di

-transitions, where

�d5 = �5 ∪ {� ∈ �| m �•)• = {�}�,

∆:��<.

, it follows that ∆:��< ⊆ ∆(�). The reverse inclusion is shown

: < ⊂ ∆(�), then∆(�) is not control invariant with respectto

such that �� VW→�2 and �2 ∉ ∆(�). Since ⊆ ∆(�)is control invariant

, it must be that�̂ ∈ {� ∈ �| m �•)• = {�}�. But,from theorem 5, we know

which establishes the result. ♣

choice, controllable transition �2in the PN structure �2of figure 1(b)

can be considered to be uncontrollable, which effectively results in aPN structure with no

e is an LESP for a PN N(m0)withno controllable transitions if and

only if the PN is live. This leads to the observationthat the PN�2(�2
�)is live for any�

International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol.5, No.2, April 2015

8

, where the set of

, and controllabletransitions

is another memberof the family ℋ that is

arepartitioned into a different set of

. The reverse inclusion is shown

is not control invariant with respectto ��. That

is control invariant

. But,from theorem 5, we know

of figure 1(b)

ectively results in aPN structure with no

withno controllable transitions if and

�2
� ∈ ∆(�2).

International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol.5, No.2, April 2015

9

The observation that we can assume all non-choice transitions are uncontrollable,even when they

are not for any � ∈ ℋ, is critical to the speeding-up the execution ofthe software package

described in reference [7]. This is illustrated in subsequent text.

The PN structures �� and �� shown in figure 3(a) and 3(b) are FCPN structures,and consequently

they belong to the class ℋ. The only difference between them isthat the non-choice transition ��

is controllable (resp. uncontrollable) in �� (resp. ��).

As a consequence of theorem 6, the sets Δ(��) and Δ(��) are identical, and areidentified by the

twenty-four minimal elements shown in figure 4, which shows theoutput generated by the above

mentioned software for ��. The algorithm in references[5,7], finds a series of outer-

approximations Ψ+ for ∆(�) for an appropriate PNstructure N, that are control invariant with

respect to N.

The iteration starts with Ψ�, the largest controllable, right-closed subset of the setof initial

markings for which there is an LESP for the fully-controlled version of N.In the context of this

example, eight minimal elements identify the right-closed ofinitial markings for which there is an

LESP for the fully-controllable version of ��shown in figure 4. The second and third among this

list of eight minimal elements arenot control invariant as��, �� ∈ �5 and

(0	0	1	0	0	0	0	0	0)~ V�→	(0	0	0	1	0	0	0	0	0)~ V�→	(0	0	0	0	0	0	0	0	0)~ .

The largest controllable subset of this right-closed set is Ψ�,which is identified by the six minimal

elements shown immediately afterwards in thesame figure.

For any right-closed set of markings Ψ that is control invariant with respect toa PN structure N,

we can envisage a supervisory policy ℘� that disables the firingof a controllable transition at a

marking if its firing would result in a new marking that is not in Ψ. It is possible to construct the

coverability graph for the PN N(m0),under the influence of this supervisory policy. The loop-test

procedure of reference[7] checks if there is a closed-path identified by ! ∈ �∗ in this coverability

graph,where (1) every transition in T appears at least once in !, and (2) ��(!) ≥ �, that is,the net

token-load change after the execution of the string ! is non-negative.

With reference to the examples at hand, the loop-test checks if the above mentioned path-

conditionis satisfied in the coverability graph that is generated by each minimal element

ofΨ+under the influence of the supervisory policy ℘�. If a minimal element fails this test,it is

elevated by a set of unit-vectors, which defines a right-closed proper subset ofΨ+. The largest

controllable subset of this right-closed set is Ψ+��, which used in lieu of Ψ+ in the next iteration.

As shown in figure 4, four minimal elements,

(1	0	0	0	0	0	0	0	0)~ , (0	0	0	0	0	0	1	0	0)~ , (0	0	0	0	0	0	0	1	0)~ , and(0	0	0	0	0	0	0	0	1)~

that define Ψ� for ��, fail this test. The loop-test will fail for the first minimal

element(1	0	0	0	0	0	0	0	0)~ ∈ min	(Ψ�), as �-(��, (1	0	0	0	0	0	0	0	0)~) = {��, �q}(⊆ �4).
But,

(1	0	0	0	0	0	0	0	0)~ V_→(0	1	0	0	0	0	0	0	0)~and

(1	0	0	0	0	0	0	0	0)~ V�→(0	0	1	1	0	0	0	0	0)~ .
Since, (0	1	0	0	0	0	0	0	0)~,	(0	0	1	1	0	0	0	0	0)~ ∉ Ψ�, the supervisorypolicy ℘��would disable

these transitions at the marking (1	0	0	0	0	0	0	0	0)~,which effectively creates a policy-induced

deadlock state. The test fails for second,third and fourth minimal elements

International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol.5, No.2, April 2015

10

(0	0	0	0	0	0	1	0	0)~ , (0	0	0	0	0	0	0	1	0)~ , (0	0	0	0	0	0	0	0	1)~ ∈ min(Ψ�),
as the marking (1	0	0	0	0	0	0	0	0)~ is inevitably reached after the firing of an appropriate set of

transitions. Specifically,

(0	0	0	0	0	0	1	0	0)~ V�V__àab (1	0	0	0	0	0	0	0	0)~ ,
(0	0	0	0	0	0	0	1	0)~ V_�V__àab (1	0	0	0	0	0	0	0	0)~ ,	
and	(0	0	0	0	0	0	0	0	1)~ V__b̀ (1	0	0	0	0	0	0	0	0)~ .

Since the marking (1	0	0	0	0	0	0	0	0)~ failed the loop-test,it follows that these three marking

would fail the test, as well.

The four minimal elements, that failed the loop-test, are elevated by nine unitvectors, and the

largest controllable, right-closed set of this newly constructed set isidentified by the twenty-four

minimal elements shown in figure 4, which identifiesthe next iterate Ψ�. Each of these twenty-

four minimal elements pass the loop-testreferred to earlier, implying that Δ(��) = Ψ�. From

theorem 6, we infer Δ(��) = Ψ�,as well.

We turn our attention to the iteration scheme for �� where �� is left as a controllabletransition.

The right-closed set of initial markings for which there is an LESPfor the fully-controlled version

of �� is identified by the same set of eight minimalelements shown in the initial part of the output

of figure 4. The largest controllablesubset of this set (Ψ�) is identified by the six minimal

elements of figure 4 along withthe vector (0	0	1	0	0	0	0	0	0)~. This extra minimal element is due

to the fact that�� is controllable in ��, which fails the loop-test along with the four that failed

thetest in figure 4. After the elevation by unit-vectors as described above, the next iterateΨ� has

the twenty-four minimal elements shown in figure 4 together with eight newelements

(1	0	1	0	0	0	0	0	0)~ , (0	1	1	0	0	0	0	0	0)~ , (0	0	2	0	0	0	0	0	0)~ , (0	0	1	1	0	0	0	0	0)~ ,
(0	0	1	0	1	0	0	0	0)~ , (0	0	1	0	0	0	1	0	0)~ , (0	0	1	0	0	0	0	1	0)~ , (0	0	1	0	0	0	0	0	1)~

That is, the minimal element (0	0	1	0	0	0	0	0	0)~ of Ψ�is replaced by these eightelements, which

defines Ψ�. These eight elements fail the loop-test, and are replacedwith additional elevated

vectors, and so on. The right-closed set that is defined by thisiteration scheme, in the limit, is the

set Δ(��) described earlier. But, as a computationscheme this procedure will not terminate. This

issue is mitigated by ensuringthat all controllable, non-choice transitions are interpreted as being

a part of the setof uncontrollable transitions. This has theoretical sanction as per theorems 5 and

6.There are other examples where the improvement in runtime is not as dramatic as

thisillustrative example.

The method isNetFreeChoice() within the class PetriNet of the previous version of the code (cf.

reference [7]),is replaced by isNetHClass() instead. The program terminates if the PN

structureunder consideration does not belong to the class H. If the the PN structure belongsto the

class ℋ, the method relabelNonChoiceTransitions() is used to relabel all controllablenon-choice

transitions in the PN structure as uncontrollable transitions. Following this, the procedures

outlined in reference [7] are executed to synthesize theminimally restrictive LESP for the PN

structure at hand.

International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol.5, No.2, April 2015

Figure 3. (a) The PN structure �� is a member of

also a member of ℋ. The non-choice transition

Fromtheorem 6, we infer that ∆(��)

4. Concluding Remarks

If some process in a manufacturing system enters into a state of suspended animationfor

perpetuity, while other events proceed towards completion with no impediment,we say the system

is in a livelocked-state. Procedures that can

manufacturing system from entering into livelockedstatesare highly desirable.

In this paper we identified two enhancements to the software tool [7] that synthesizesthe

minimally restrictive, liveness enf

systems modeled using a class of weighted

For the first enhancement, we identified a class of PN structures,

classes of PN structures where the existe

sufficient to conclude that there is an LESP when the sameinstance is initialized with a larger

marking. This broadens the scope of the softwaretool of reference [7]. For the second

enhancement, we showed that the minimallyrestrictive LESP does not control

transitions in the PN model ofthe manufacturing system. This observation plays a crucial role in

improving thespeed of convergence of the iterative scheme used in the software des

above,which was illustrated by an example.

International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol.5, No.2, April 2015

is a member of ℋ as it is an FCPN structure. (b) The PN structure

choice transition �� is controllable (resp. uncontrollable) in

() = ∆(��).

If some process in a manufacturing system enters into a state of suspended animationfor

perpetuity, while other events proceed towards completion with no impediment,we say the system

state. Procedures that can synthesize supervisorypolicies that can prevent the

manufacturing system from entering into livelockedstatesare highly desirable.

In this paper we identified two enhancements to the software tool [7] that synthesizesthe

liveness enforcing supervisory policy (LESP) for aclass of manufacturing

systems modeled using a class of weighted Petri nets (PNs).

For the first enhancement, we identified a class of PN structures, ℋ, that includesall known

classes of PN structures where the existence of a LESP for an instanceinitialized at a marking is

cient to conclude that there is an LESP when the sameinstance is initialized with a larger

marking. This broadens the scope of the softwaretool of reference [7]. For the second

howed that the minimallyrestrictive LESP does not control-disable non

transitions in the PN model ofthe manufacturing system. This observation plays a crucial role in

improving thespeed of convergence of the iterative scheme used in the software des

above,which was illustrated by an example.

International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol.5, No.2, April 2015

11

as it is an FCPN structure. (b) The PN structure ��is

is controllable (resp. uncontrollable) in �� (resp. ��).

If some process in a manufacturing system enters into a state of suspended animationfor

perpetuity, while other events proceed towards completion with no impediment,we say the system

synthesize supervisorypolicies that can prevent the

In this paper we identified two enhancements to the software tool [7] that synthesizesthe

(LESP) for aclass of manufacturing

, that includesall known

nce of a LESP for an instanceinitialized at a marking is

cient to conclude that there is an LESP when the sameinstance is initialized with a larger

marking. This broadens the scope of the softwaretool of reference [7]. For the second

disable non-choice

transitions in the PN model ofthe manufacturing system. This observation plays a crucial role in

improving thespeed of convergence of the iterative scheme used in the software described

International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol.5, No.2, April 2015

Figure 4. The output file generated by the software described in reference [7] for the FCPN structure

REFERENCES

[1] P. Valckenaers and H. Van-

Journalof Intelligent Manufacturing, vol. 14, pp. 137

[2] L. Castillo, J. Fdez-Olivares, and A. Gonzalez, “A three

generationof live and safe petri nets for manufacturing systems

Manufacturing,vol. 11, pp. 559

[3] L. Ferrarini, L. Piroddi, and S. Allegri, “Modeling and logic controller specification of flexible

manufacturingsystems using behavioral traces and petri net building blocks,” Journal

Manufacturing,vol. 15, pp. 351

[4] N. Somnath and R. Sreenivas, “On Deciding the Existence of a Liveness Enforcing Supervisory

Policyin a Class of Partially

AutomationScience and Engineering, vol. 10, pp. 1157

[5] R. Sreenivas, “On the existence of supervisory policies that enforce liveness in partially controlled

free-choice petri nets,” IEEE Transactions on Automatic Control, vol. 57, no. 2, pp.

February2012.

[6] R. Sreenivas, “On a decidable class of partially controlled petri nets with liveness enforcing

supervisory policies,” IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 43, no. 5,

pp. 1256–1261, August 2013.

International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol.5, No.2, April 2015

Figure 4. The output file generated by the software described in reference [7] for the FCPN structure

shownin figure 3(b).

-Brussel, “Deadlock avoidance in flexible flow shops with loops,”

Journalof Intelligent Manufacturing, vol. 14, pp. 137–144, 2003.

Olivares, and A. Gonzalez, “A three-level knowledge-based system for the

generationof live and safe petri nets for manufacturing systems,” Journal of Intelligent

Manufacturing,vol. 11, pp. 559–572, 2000.

L. Ferrarini, L. Piroddi, and S. Allegri, “Modeling and logic controller specification of flexible

manufacturingsystems using behavioral traces and petri net building blocks,” Journal

Manufacturing,vol. 15, pp. 351–371, 2004.

N. Somnath and R. Sreenivas, “On Deciding the Existence of a Liveness Enforcing Supervisory

Policyin a Class of Partially-Controlled General Free-Choice Petri Nets,” IEEE Transactions on

onScience and Engineering, vol. 10, pp. 1157–1160, October 2013.

R. Sreenivas, “On the existence of supervisory policies that enforce liveness in partially controlled

choice petri nets,” IEEE Transactions on Automatic Control, vol. 57, no. 2, pp.

R. Sreenivas, “On a decidable class of partially controlled petri nets with liveness enforcing

supervisory policies,” IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 43, no. 5,

International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol.5, No.2, April 2015

12

Figure 4. The output file generated by the software described in reference [7] for the FCPN structure

xible flow shops with loops,”

based system for the

,” Journal of Intelligent

L. Ferrarini, L. Piroddi, and S. Allegri, “Modeling and logic controller specification of flexible

manufacturingsystems using behavioral traces and petri net building blocks,” Journal of Intelligent

N. Somnath and R. Sreenivas, “On Deciding the Existence of a Liveness Enforcing Supervisory

Choice Petri Nets,” IEEE Transactions on

R. Sreenivas, “On the existence of supervisory policies that enforce liveness in partially controlled

choice petri nets,” IEEE Transactions on Automatic Control, vol. 57, no. 2, pp. 435–449,

R. Sreenivas, “On a decidable class of partially controlled petri nets with liveness enforcing

supervisory policies,” IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 43, no. 5,

International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol.5, No.2, April 2015

13

[7] S. Chandrasekaran, N. Somnath, and R. Sreenivas, “A Software Tool for the Automatic Synthesis of

Minimally Restrictive Liveness Enforcing Supervisory Policies for a class of General Petri

Nets,”Journal of Intelligent Manufacturing, 2014, to appear (DOI 10.1007/s10845-014-0888-5).

[8] R. Valk and M. Jantzen, “The residue of vector sets with applications to decidability problems in Petri

nets,” ActaInformatica, vol. 21, pp. 643–674, 1985.

[9] P. Ramadge and W. Wonham, “Modular feedback logic for discrete event systems,” SIAM J.

Controland Optimization, vol. 25, no. 5, pp. 1202–1218, September 1987.

[10] R. Sreenivas, “On a weaker notion of controllability of a language K with respect to a language L,”

IEEE Transactions on Automatic Control, vol. 438, no. 9, pp. 1446–1447, September 1993.

[11] R. Sreenivas, “On the existence of supervisory policies that enforce liveness in discrete-event

dynamic systems modeled by controlled Petri nets,” IEEE Transactions on Automatic Control, vol.

42, no. 7, pp.928–945, July 1997.

[12] A. Giua, “Petri nets as discrete event models for supervisory control,” Ph.D. dissertation, ECSE

Dept.,Rensselaer Polytechnic Institute, Troy, NY., 1992.

[13] J. Moody and P. Antsaklis, Supervisory Control of Discrete Event Systems using Petri Nets. MA:

Kluwer Academic Publishers, 1998.

[14] M. Iordache and P. Ansaklis, Supervisory control of Concurrent Systems: A Petri net Structural

Approach. MA: Kulwer Academic Publishers, 2006.

[15] F. Basile, L. Recalde, P. Chiacchio, and M. Silva, “Closed-loop Live Marked Graphs under

GeneralizedMutual Exclusion Constraint Enforcement,” Discrete Event Dynamic Systems, vol. 19,

no. 1, pp.1–30, 2009.

[16] J. Lopez-Grao and J. Colom, “A petri net perspective on the resource allocation problem in software

engineering,” in Transactions on Petri Nets and Other Models of Concurrency, LNCS Vol.

6900,Springer, 2012, pp. 181–200.

[17] F. Tricas, “Analysis, prevention and avoidance of deadlocks in sequential resource allocation

systems,” PhD Thesis, Departamento de Ingenier´ıaEl´ectrica e Inform´atica, Universidad de

Zaragoza, 2003.

[18] S. Reveliotis, E. Roszkowska, and J. Choi, “Generalized algebraic deadlock avoidance policies for

sequential Resource Allocation Systems,” IEEE Transactions on Automatic Control, vol. 53, no. 7,pp.

2345–2350, December 2007.

[19] A. Ghaffari, N. Rezg, and X. Xie, “Design of a live and maximally permissive Petri net

controllerusing the theory of regions,” IEEE transactions on robotics and Automation, vol. 19, no. 1,

pp. 137–142, January 2003.

[20] O. Marchetti and A. Munier-Kordon, “A sufficient condition for the liveness of weighted event

graphs,” European Journal of Operations Research, vol. 197, pp. 532–540, 2009.

[21] L. Ferrarini, L. Piroddi, and S. Allegri, “A comparative performance analysis of deadlock avoidance

control algorithms for FMS,” Journal of Intelligent Manufacturing, vol. 10, pp. 569–585, 1999.

[22] Y. Chen, Z. Li, and K. Barkaoui, “Maximally permissive liveness-enforcing supervisor with lowest

implementation cost for flexible manufacturing systems,” Information Sciences, vol. 256, pp. 74–

90,2014.

[23] H. Hu and Z. Li, “Synthesis of liveness enforcing supervisor for automated manufacturing

systemsusing insufficiently marked siphons,” Journal of Intelligent Manufacturing, vol. 21, no. 4, pp.

555–567, 2010.

[24] H. Hu and Y. Liu, “Supervisor simplification for ams based on petri nets and inequality analysis,”

IEEE Transactions on Automation Science and Engineering, vol. 11, no. 1, pp. 66–77, January 2014.

[25] S.-Y. Li, A.-M. An, Y. Wang, G. Wang, C. Hou, and Y. Cai, “Design of liveness-enforcing

supervisors with simpler structures for deadlock-free operations in flexible manufacturing systems

usingnecessary siphons,” Journal of Intelligent Manufacturing, vol. 24, pp. 1157–1173, 2013.

[26] R. Sreenivas, “Some observations on supervisory policies that enforce liveness in partially controlled

Free Choice Petri nets,” Mathematics and Computers in Simulation, vol. 70, pp. 266–274, 2006.

