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ABSTRACT 

 
If a manufacturing system enters into a state where a task enters into a state of suspended animation for 

perpetuity, we say it is in a livelocked state. In contrast, all tasks of the system remain suspended for 

perpetuity in a deadlocked state of the system. A livelock-free manufacturing system can never experience 

deadlocks, but the converse is not necessarily true. A livelock-prone manufacturing system can be 

regulated using a supervisory policy such that the resulting supervised system is livelock-free. If a liveness 

enforcing supervisory policy (LESP) prevents the occurrence of an event at given state of the 

manufacturing system, and every other LESP, irrespective of the implementation paradigm, prescribes the 

same control for that state, we say the original LESP is minimally restrictive.  

 

This paper is about two enhancements to an existing software tool that synthesizes the minimally restrictive 

LESP for a manufacturing system modelled using a class of weighted Petri nets (PNs). The first 

enhancement is about broadening the scope of the software tool to a larger class of PNs. The second 

enhancement is about improving the running time of the software tool using a property identified in this 

paper.  

 

We identify a class, ℋ, of general Petri net (PN) structures where the existence of a liveness enforcing 

supervisory policy (LESP) for an instance of this class, initialized at a marking, is sufficient to infer the 

existence of an LESP when the same instance is initialized at a larger marking. As a consequence, the 

existence of an LESP for the PN that results when a member of this class is initialized with a marking, is 

decidable. Additionally, the maximally permissive LESP, when it exists, can be synthesized using a software 

tool described in an earlier paper. We also highlight a property that plays a critical role in the speed of 

convergence of the iterative procedure for the synthesis of the minimally restrictive LESP, when it exits, for 

any instance of ℋ that uses the aforementioned software package.  

 

KEYWORDS 

 
Manufacturing Systems, Livelock Avoidance &Petri Nets 

 

1. INTRODUCTION 

 
Manufacturing systems belong to a class of systems called Discrete-Event/Discrete-State (DEDS) 

systems. The (discrete-)states of these systems have a logical, as opposed to numerical, 

interpretation. At each state, there are potential (discrete-)events that can occur, the occurrence of 

any one of them would change the state of the system, which then results in a new set of potential 

events, and this process can be repeated as often as necessary. DEDS systems are regulated by a 

supervisory policy, which determines which event is to be permitted at each state, in such a 
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manner that some behavioural specification is satisfied. Our focus is on livelock-avoidance. A 

manufacturing system is in a livelocked-state if a task enters into a state of suspended animation 

for perpetuity. If all tasks in the manufacturing system are prevented from progressing to 

completion, we say the manufacturing system has entered a deadlocked-state (cf. [1], for 

example). A livelock-free manufacturing system does not have deadlocked-states, but a deadlock-

free manufacturing system can still experience livelocks. Livelock freedom is harder to achieve, 

compared to deadlock freedom.  

 

Petri nets (PNs) have been extensively used to model manufacturing systems (cf. [2,3], for 

example). In this paper we consider the synthesis of liveness enforcing supervisory policies 

(LESPs) in PN models of manufacturing systems. The results in the literature range from heuristic 

procedures to provably correct methods that can synthesize LESPs for a variety of PN classes. 

Since the existence of an LESP in an arbitrary PN instance is not even semi-decidable, it is 

imperative that any provably correct scheme restrictsits attention to a sub-class of PN structures. 

This paper identifies one such a class, ℋ, which strictly includes all other classes of PNs for 

which a LESP can be automatically synthesized (cf. [4–6], for example). Additionally, the 

software tool identified in reference [7] can be used to synthesize the minimally restrictive LESP, 

when it exists, for any member of the class ℋ, thus broadening its scope. We also identify a 

characterization of the minimally restrictive LESP for any instance of ℋ, which can be used to 

improve the running time of the aforementioned software tool.  

 

This paper is organized as follows – section 2 introduces the notations and definitions used in this 

paper. This section also reviews the supervisory control paradigm for PN models, along with a 

brief review of the relevant results from the literature. The main results are presented in section 3. 

Section 4 presents the conclusions.  

 

2. NOTATIONS AND DEFINITIONS AND SOME PRELIMINARY OBSERVATIONS 
 ℕ	(ℕ�)denotes the set of non-negative (positive) integers. The cardinality of a set A is 

represented as card(A). A Petri net (PN) structure � = (	, �, �, 
) is an ordered 4-tuple, 

where	 = ���⋯���is a set of nplaces, � = ���⋯��� is a collection ofmtransitions,Φ ⊆ (Π ×�) ∪ (� × Π)isasetofarcs,andΓ:Φ → ℕ�isthe weight associated with each arc. The weight of an 

arc is represented by an integer that is placed alongside the arc. If an arc has a unitary weight, it is 

not represented in its graphical representation in this paper.  

 

If all arcs of a PN are unitary, it is said to be an ordinary PN, otherwise it is a general PN. The 

initial marking of a PN structure N is a function ��: Π → ℕ, which identifies the number of 

tokens in each place. A Petri net (PN), N(m
0
), is a PN structure N together with its initial marking 

m
0
.  

 �∗represents the set of all finite-length strings of transitions. For ! ∈ �∗, we use#(!) to denote 

the Parikh vector of σ. That is, the ith entry, #$(!), corresponds to the number of occurrences of 

transition ti in σ.  

 

Let %• ≔ �(|((, %) ∈ Φ� and %• ≔ �(|(%, () ∈ Φ�. If ∀� ∈ �,• �+(�) ≥ Γ((�, �))for some � ∈ � and some marking mi, then � ∈ � is said to be enabled at marking mi. The set of enabled 

transitions at marking mi is denoted by the symbol Te(N, m
i
). An enabled transition � ∈ �-(�,�+) 

can fire, which changes the marking m
i
 to m

i+1
 according to �+��(�) = �+(�) − Γ(�, �) +Γ(�, �).  

 

Asetofmarkingsℳ ⊆ ℕ�issaidtoberight-closed[8]if((�� ∈ ℳ)⋀(�2 ≥ ��) ⇒ (�2 ∈ ℳ)), 
and is uniquely defined by its finite set of minimal-elements.  
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When the marking is interpreted as a nonnegative integer-valued vector, it is useful to definethe 

input matrix IN (output matrix OUT) as an n×m matrix, where INi, j (OUTi,j) equals Γ((pi,tj)) 

(Γ((pi,tj))) if pi∈•tj, (pi∈t•
j) and is zero-valued otherwise. The incidence matrix C of the PN N is an 

n×m matrix, where C = OUT−IN. 

 

2.1. Supervisory Control of PNs 

 
Under this paradigm, the set of transitions in the PN is partitioned into a set of 

controllabletransitions (�4 ⊆ �)and a set of uncontrollable transitions (�5 ⊆ �). Thecontrollable 

(uncontrollable) transitions are represented as filled (unfilled) boxes ingraphical representation of 

PNs. 

 

A supervisory policy ℘:ℕ� × � → �0,1�, is a function that returns a 0 or 1for each transition and 

each reachable marking. Transition �	 ∈ �is control-enabled(state-enabled) if ℘(�, �) = 1 

(� ∈ �-(�,�)) for some marking m. A transition that isstate- and control-enabled can fire, which 

results in a new marking as indicated in theprevious section. Since uncontrollable transitions 

cannot be prevented from firing bythe supervisory policy, we require the following condition to 

be true of all supervisorypolicies: ∀� ∈ ℕ� , ℘(�, �) = 1, if � ∈ �5. 

 

A valid firing string! = ���2 ⋯�9 ∈ �∗for a marking m
isatisfies the followingconditions: 

(1)�� ∈ �-:�,;+<,℘:;+ , ��< = 1,and (2) for = ∈ �1,2,⋯ ? − 1�the firingof transition tj produces 

a markingm
i+j

,�@�� ∈ �-:�,;+�@<, and ℘:;+�@ , �@��< = 1. 

 ℜ(�,��, ℘)denotes the set of markings that are reachable from m0 under thesupervision of ℘in 

N. We use �+ B→�@to denote that mjresults from the firing of! ∈ �∗from mi. 

 

A transition tk is live under the supervision of ℘ if ∀�+ ∈ ℜ(�,��, ℘), ∃�@ ∈ ℜ:�,�+ , ℘<such 

that�9 ∈ �-:�,;@< and ℘:;@ , �9< = 1. If all transitions in N(m0)are live under ℘, then it is a 

liveness enforcing supervisory policy (LESP) for N(m0).The policy ℘ is said to be minimally 

restrictive if for every LESP℘D:ℕ� × � → �0,1�, the following condition holds∀�+ ∈ ℕ�, ∀	� ∈�,℘:;+ , �< ≥ ℘D:;+ , �<. 

 

There is an LESP for N(m0)if and only if �� ∈ ∆(F), 
whereΔ(�) = ��� ∈ ℕ4HIJ(K)|∃	LM	NOPQ	RST	�(��)� is the set of initial markings m

0 for 

which there is aLESP for N(m
0
). It follows that Δ(�) is control invariant (cf. [9,10]) with respect 

toN; that is, if �� ∈ Δ(�), �5 ∈ �5 ∩ �-(�,��) and �� VW→�2in N, then �2 ∈Δ(�).Equivalently, only the firing of a controllable transition at any marking in Δ(�) canresult in 

a new marking that is not in Δ(�). 
 

If ℘ is an LESP for N(m0), then ℜ(�,��, ℘) ⊆ ∆(�). Additionally, the LESP℘∗, that prevents 

the firing of a controllable transition at any marking when its firingwould result in a new marking 

that is not in ∆(F), is the minimally restrictive LESPfor N(m0). That is, there can be no other 

LESP, independent of the implementationparadigm, that can be better than ℘∗. 
 

Neither the existence, nor the non-existence, of an LESP for an arbitrary PN issemi-decidable; the 

existence of an LESP is decidable if all transitions in the PNare controllable, or if the PN 

structure belongs to specific classes identified in theliterature [4–6,11]. The process of deciding 

the existence of an LESP in an arbitraryinstance from these classes is NP-hard. 
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2.2. Review of Relevant Prior Work 

 
Monitors were introduced into supervisory control of PNS by Giua [12], and wereused by Moody 

et al. [13], and Iordache et al. [14] to derive sufficient conditions forthe existence of certain 

classes of PNs. Sufficient conditions for minimally restrictive,closed-loop liveness of a class 

Marked Graph PNs supervised by monitors were derivedby Basile et al. [15]. There are necessary 

and sufficient conditions for classes ofPNs known as S
3
PR and S

4
PR nets that can be used to 

synthesize liveness enforcingenhancements in instances of these classes [16,17]. Reveliotis et al. 

[18] and Ghaffariet al. [19] used the theory of regions to identify minimally restrictive LESPs 

forResource Allocation Systems. Marchetti et al. [20] presented a polynomial time sufficient 

condition for liveness, for the class of Unitary Weighted Event Graphs. Ferrariniet al [21] 

compare the performance of a selection of deadlock avoidance policies inPN models of flexible 

manufacturing systems. Chen et al. [22] use Integer LinearProgramming to synthesize invariant 

based monitors that enforce liveness in a classof PNs. Hu et al. [23,24] use a set of inequalities to 

characterize insufficiently markedsiphons that is subsequently used to develop an algebraic 

LESP-synthesis procedure.Li et al [25] develop an iterative siphon-based control scheme for 

preventing deadlocksin PN models of manufacturing systems using a mixed integer 

programmingapproach involving what are known as necessary siphons. 

 

3. Main Results 

 
Let,Ω(�) = ��̂ ∈ �| �• ∩ �̂• ≠ ∅�, denote the set of transitions that share a common inputplace 

with � ∈ �for a PN structure � = (	, �, �, 
). Consequently,(�� ∈ Ω(�2)) ⇒ (�2 ∈ Ω(��)). Let ℋ\  denote a class of PN structures where the following property is true: ∀� ∈ ∆(�), ∀�5 ∈ �5 , ∀� ∈ 	Ω(�5), :� ∈ �-(�,�)< ⇒ :�5 ∈ �-(�,�)<.						(1) 
That is, ℋ\  is a class of PN structures where, if a transition t is state-enabled, then all 

uncontrollable transitions that share a common input place with t are also state enabledat any 

marking in ∆(�). The following lemma finds use in the proof of theorem2. 

 

Lemma 1: (Lemma 5.1, [5]) Let ℘ be a LESP for N(m0), where �� ∈ ∆(�), for aPN structure 

� ∈ ℋ\ . Suppose �� B→�+ under the supervision of ℘, and�D � BD→�D @ without supervision in N, 

where the number of occurrences of each controllabletransition in ! and !̂ are identical, and�D � ≥
��. There exists strings !�, !̂� ∈ �∗such that (1) �� BB_àb�9under the supervision of ℘ in N, 

(2)�D � BDBD_àb�D c withoutsupervision in N, and (3) #(!!�) = #(!̂!̂�). Consequently,�D c ≥ �D 9. 

 

Proof: Let �d5 ⊆ �5denote the set of uncontrollable transitions that appear more oftenin !̂as 

compared to !. If �d5 = ∅, then!̂ = !	 and the result holds trivially. If �d5 ≠ ∅,,there is a string!�  

such �+ B_→�+�� under the supervision of the LESP ℘ suchthat (1) at least one member of �5 ∈ �d5 is state-enabled at�+��, and (2) none ofthe members of �d5 are state-enabled at any 

marking that results from the firing of aproper prefix of !� at�+. It follows that �D e B_→�D @��, 

without any supervision, in N.If this were not the case, there must be a proper prefix of !�, of the 

form !f��, suchthat �D e Bg→�g  in N, but�� ∉ �-(�,�g ). Additionally, �� ∈ Ω(�5̅)for some �5̅ ∈ �d . 

Since� ∈ ℋ\ , and �g ∈ ∆(�), it follows that �5 ∈ �-(�,�g ), which contradicts requirement (2).  

 

Suppose �+ B_jWàb�@�� under ℘ in N, and �D @ B_→�D @�� without supervision inN. We let �@ ←�@��,�D @ ← �D @��, ! ← 	!!��5,and!̂ ← !!��5. The result followsby repeating the above 

construction as often as necessary till �d5 = l.             ♣ 
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The following theorem notes that ∆(�) is right-closed if � ∈ ℋ\ . 

 

Theorem 2:m:�� ∈ ∆(�)<⋀(�D � ≥ ��)n ⇒ :�D � ∈ ∆(�)<,if� ∈ ℋ\ . 

 

Proof: Since �� ∈ ∆(�), there is an LESP ℘ for N(m0). Following reference [5],we define an 

LESP ℘D for N(�D �) as follows (1)∀� ∈ �,℘D(�D �, �) = ℘(��, �), (2) if�D � BD→�D + under ℘D , then 

(2a) ∀�5 ∈ �5, ℘D:�D + , �5< = 1, and (2b) ∀�4 ∈ �4, :℘D:�D + , �4< = 1< ⟺ (∃! ∈ �∗,suchthat 

�� B→�9under ℘, and the number of occurrences of eachcontrollable transition in ! and !̂�4 are 

identical). 

 

If �D � BD→�D + under ℘D , then ∃! ∈ �∗such that �� B→�@under ℘, and the numberof occurrences of 

each controllable transition in ! and !̂ are identical. Using lemma1, and the definition of ℘D , we 

know ∃!̂�, !� ∈ �∗ such that �D � BDBD_àb�D +��under ℘D ,�� BB_àb�@��under ℘, and�D +�� ≥ �@��. 

Consequently, for any !2 ∈ �∗such that�@�� Bp→�@�2under ℘, we have �D +�� Bp→�D +�2 under ℘D  as 

well.  Since ℘ is an LESPfor N(m0), it follows that℘D is an LESP for N(�D �).                       ♣ 

 

Lemma 1 and theorem 2 together imply the following theorem. 

 

Theorem 3:∆(�) is right-closed if � ∈ ℋ\ . 

 

The above condition is not necessary for the right-closure of ∆(�). For instance,∆(��)	is right-

closed for the general PN �� shown in figure 1(a), but�� ∉ ℋ\ . Specifically,∆(��) is identified by 

the inequality (1 1 1 1 1)m≥ 1, and m = (1 0 000)T∈ ∆(��), �2 ∈ �5,�q ∈ �-(��,�), but�2 ∉�-(��,�). 
 

There is an LESP for the PN N(m
0
)if and only if�� ∈ ∆(�), and the existence ofan LESP is 

undecidable for a general PN (cf. corollary 5.2, [11]). This would meanthat the set ∆(�) cannot 

be computed for an arbitrary PN structure N. To overcome this limitation, we modify the 

requirement of equation 1 as 

 ∀� ∈ ℕ� , ∀�5 ∈ �5, ∀� ∈ 	Ω(�5), :� ∈ �-(�,�)< ⇒ :�5 ∈ �-(�,�)<								(2) 
 

This requirement defines a class of PNs, which we denote asℋ(⊆ ℋ\), and fromtheorem 3, we 

conclude ∆(�)is right-closed for any� ∈ ℋ. 

 

Theorem 4: A PN structure � = (	, �, �, 
) belongs to the class ℋ if and only if∀� ∈ Π, ∀�5 ∈�• ∩ �5,	 
 

rΓ(�, �5) = stM� ∈ �•Γ(�, �)u ∧ (∀� ∈ 	Ω(�5), �5• ⊆ �• ). 
 

Proof:(If) Suppose, � ∈ �-(�,�) for� ∈ ℕ�, and∃�5 ∈ 	Ω(�) ∩ �5(⇒ � ∈ 	Ω(�5)).Since �5• ⊆ �• and∀� ∈ �5• , Γ(�, �5) = stMV∈w•Γ(�, �), it follows that�5 ∈ �-(�,�). 
 

(Only If) We will show that the violation of requirement in the statement of thetheorem for a PN 

structure N would imply that� ∉ ℋ.Suppose ∃� ∈ Π, ∃�5 ∈ �• ∩ �5 such that either 

 

1. Γ(�, �5) > stMV∈w•Γ(�, �), or 
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2. ∃� ∈ Ω(�5), �5• − �• ≠
 

In each of these cases we construct a marking �-(�,�), which leads to the conclusion that

 

For the first-case, the marking m

tokens in the input places of any transition

result in�̂ ∈ �-(�,�) and �5 ∉ �
 

Similarly, for the second-case, the marking 

that� ∈ �-(�,�), while ensuring that the places in � ∈ �-(�,�) and �5 ∉ �-(�,�)
♣ 

 

There is an O(n
2
m

2
) algorithm that decides if an

where M = yLTz(	)and m = card(T)

results in reference [5] implies that the existenceof an LESP for 

the software package described inreference [7] can be used to compute the minimally restrictive 

LESP for N(m0), whenit exists. As noted in the introduction section, each decidable class of PN 

structuresidentified in references [4

PN structure N2 shown in figure 1(b) is a member of 

theorem 4, and it does not belong to any of the classes of structuresidentified in references [4

Additionally, 

 min:∆(�2)< = �(0	0	0	1	
(0	1	2	0	1)~ , (2	1

There is an LESP for �2(�2�)if and only if

Figure 1.  (a) The PN structure ��
figure1, [4]). (b) The PN structure N

4(cf. figure 2a, [6]). (c) The PN structure ℕ�|(�(��) + �(�2) + 	�(�q) + �
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≠ ∅ 

In each of these cases we construct a marking � ∈ ℕ� such that ∃� ∈ Ω(�5) ∩ �-(�
, which leads to the conclusion that� ∉ ℋ. 

m places exactly (stMV∈w•Γ(�, �))-many tokensin p, and su

ens in the input places of any transition�̂ ∈ Ω(�5)such thatΓ(�, �̂) = stMV∈w•Γ(
�-(�,�). 

case, the marking mplaces sufficient tokens in the inputplaces of 

le ensuring that the places in ( �5• − �)•  remain empty. Consequently, ).       

algorithm that decides if an arbitrary PN structure belongs to the class 

m = card(T). The right-closure of ∆(�)for any � ∈ ℋ, along with the 

results in reference [5] implies that the existenceof an LESP for N(m0) is decidable. 

the software package described inreference [7] can be used to compute the minimally restrictive 

, whenit exists. As noted in the introduction section, each decidable class of PN 

identified in references [4–6] are strictly contained in the class ℋ. As an illustration, 

shown in figure 1(b) is a member of ℋ as it meets the structuralrequirements of 

theorem 4, and it does not belong to any of the classes of structuresidentified in references [4

	0)~ , (1	0	1	0	2)~ , (0	0	2	0	2)~ , (2	0	0	0	2)~ , (1	1	1	
1	0	0	1)~ , (0	2	2	0	0)~ , (1	2	1	0	0)~ , (2	2	0	0	0)~� 

if and only if�2� ∈ ∆(�2). 

� is not a member of the class ℋ\ . However, ∆(��) is right

N2is a member of ℋ as it meets the structural requirements of theorem 

4(cf. figure 2a, [6]). (c) The PN structure N3 is not a member of the class ℋ, and ∆�(��) ≥ 1) ∨ (�(��)��J2 = 1)�is not right-closed. 
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(�,�) and�5 ∉

, and sufficient (�, �)that will 

cient tokens in the inputplaces of t such 

Consequently, 

        

to the class ℋ, 

, along with the 

is decidable. Furthermore, 

the software package described inreference [7] can be used to compute the minimally restrictive 

, whenit exists. As noted in the introduction section, each decidable class of PN 

. As an illustration, the 

as it meets the structuralrequirements of 

theorem 4, and it does not belong to any of the classes of structuresidentified in references [4–6]. 

	0	1)~ , 

 
is right-closed (cf. 

as it meets the structural requirements of theorem ∆(�q) = �� ∈
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A transition� ∈ � is said to be a choice-transition (resp. non-choice transition) if ( �• )• ≠ ��� 
(resp. ( �• )• = ���). In reference [26] it is shown that the minimally restrictive LESP for a class of 

ordinary PNs called Free-choice PNs does not control-disable a non-choice (controllable) 

transition.  The following result shows that a similar observation holds for any minimally 

restrictive LESP for N(m0) where � ∈ ℋ. 

 

Theorem 5: [26] Suppose �� ∈ ∆(�) for a PN N(m0), where � ∈ ℋ, then theminimally 

restrictive LESP ℘∗ for N(m0) does not disable any controllable transition�4 ∈ �4 that satisfies the 

requirement ( �4• )• = ��4�. 
 

Proof: (Sketch) Suppose ∃�� ∈ ℜ(�,��, ℘∗):⊆ ∆(�)<, ∃�2 ∈ ℜ(�,��), such that�� V�→�2 

in N for some �4 ∈ ��  that satisfies the requirement ( �4• )• = ��4�. We willshow that 

1. ∃�� ∈ �∗such that �2 ��→��  in N, where �� ∈ ∆(�). 
2. Additionally, if �� = �����2,�2 �� _b̀�D � ��pb̀�,� and�D � VW→�D 2 in N for some�5 ∈ �5, then 

∃�D ∈ �∗, ∃�D q ∈ ℜ(�,�D 2), such that�D � VW→�D 2 �D→�D qand�D q ∈ ∆(�). 
Following the repeated application of the above observation, we conclude that�2 ∈ ∆(�). 
 

Since ℘∗ is an LESP, ∃�� ∈ (� − ��4�)∗, and�� �_b̀�q V�→�� in N underthe supervision of℘∗. 
Since( �4• )• = ��4� , it follows that �2 �_b̀��in N, and���,�q,��� ⊆ ∆(�)(cf. figure 2(a)). 

Suppose�� = �2�q,�2 �pb̀�� ��b̀��,and �5 ∈ �5 such that�� VW→���. Also,∃�2(∈ ∆(�)) such 

that�� �pb̀��. There aretwo cases to consider – (i) �5 ∈ �-(�,��), and (ii) �5 ∉ �-(�,��). 
 

In the first case, ∃��(∈ ∆(�)) such that �� VW→�� (cf. figure 2(b)). Since ℘∗ isan LESP, 

∃�� ∈ (� − ��4�)∗, ∃��,�� ∈ ∆(�),such that �� ��b̀�� V�→��. Since ( �4• )• = ��4�, we have 

��� ��b̀��, where�� ∈ ∆(�). 
 

For the second case where �5 ∉ �-(�,��), since �5 ∈ �-(�,��), it follows that∃� ∈ Π such 

that�(�4, �), (�, �5)� ⊆ Φ, and the prior-firing of �4 is necessary to place sufficient tokens in � ∈ Π, for �5 to be state-enabled at �� (cf. figure 2(c)). Since� ∈ ℋ, it follows that none of the 

transitions in Ω(�5) can fire at any marking thatis reachable in the segment identified by 

�� �_b̀�q. Consequently, �5 ∈ �-(�,��),and �� VW→��� under the supervision of ℘∗, where 

��� ∈ ∆(�). Consequently,��� ��b̀���.            ♣ 

 

Theorem 5 does not hold for general PN structures. The PN structure �q shownin figure 1(c) does 

not belong to the class ℋ. This is becauseminV∈w�•Γ(��, �) = 1,while Γ(��, ��) = 2, and�� ∈ ��• ∩�5. dditionally, Δ(�q) = �� ∈ ℕ�|(�(��) + �(�2) +�(�q) + �(��) ≥ 1) ∨ (�(��)��J2 =1)�, which is not right-closed. Theminimally restrictive LESP for�q()for any �q� ∈ Δ(�q) 
control-disables a controllabletransition at a marking in Δ(�q) only if its firing results in a new 

marking thatis not in Δ(�q). The minimally restrictive LESP would control-disable the non-

choicetransition �2 ∈ �4 at the marking(0	1	0	0	1)~ ∈ Δ(�q). 
 

As a consequence of theorem 5, without loss of generality, we can assume all non-choice 

transitions are uncontrollable, even when they are not, for any instance ofthe class of PN 

structures ℋ. This is formally stated in the following theorem. 
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Figure 2.  A graphical illustration used in the proof of theorem 5.

Theorem 6: Let � = (	, �, �,
transitions is partitioned into the set of uncontrollable transitions �4  (i.e. � = �4 ∪ �5and�5 ∩ �4
structurally identical to N, but the set of transitions in 

uncontrollable- and controllable-

 

 

and�d4 = � − �d5. Then ∆(�) = ∆

Proof: Since�d4 ⊆ �4, it follows that 

bycontradiction. Suppose,∆:��< ⊂
is, ∃�� ∈ ∆(�), ∃�̂5 ∈ �d5such that 

with respect to N, it must be that

that�2 ∈ ∆(�), which establishes the result.

As an illustration, the non-choice, controllable transition 

can be considered to be uncontrollable, which e

controllable transitions. There is an LESP for a PN 

only if the PN is live. This leads to the observationthat the PN
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, 
) be a PN structure from the familyℋ, where the set

transitions is partitioned into the set of uncontrollable transitions �5, and controllabletransitions 

= ∅). Suppose ��is another memberof the family 

, but the set of transitions in �� arepartitioned into a di

-transitions, where 

�d5 = �5 ∪ {� ∈ �| m �• )• = {�}�, 

∆:��<. 

 

, it follows that ∆:��< ⊆ ∆(�). The reverse inclusion is shown 

: < ⊂ ∆(�), then∆(�) is not control invariant with respectto 

such that �� VW→�2 and �2 ∉ ∆(�). Since ⊆ ∆(�)is control invariant 

, it must be that�̂ ∈ {� ∈ �| m �• )• = {�}�. But,from theorem 5, we know 

which establishes the result. ♣ 

 

choice, controllable transition �2in the PN structure �2of figure 1(b) 

can be considered to be uncontrollable, which effectively results in aPN structure with no 

e is an LESP for a PN N(m0)withno controllable transitions if and 

only if the PN is live. This leads to the observationthat the PN�2(�2
�)is live for any�
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, where the set of 

, and controllabletransitions 

is another memberof the family ℋ that is 

arepartitioned into a different set of 

. The reverse inclusion is shown 

is not control invariant with respectto ��. That 

is control invariant 

. But,from theorem 5, we know 

of figure 1(b) 

ectively results in aPN structure with no 

withno controllable transitions if and 

�2
� ∈ ∆(�2). 
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The observation that we can assume all non-choice transitions are uncontrollable,even when they 

are not for any � ∈ ℋ, is critical to the speeding-up the execution ofthe software package 

described in reference [7]. This is illustrated in subsequent text. 

 

The PN structures �� and �� shown in figure 3(a) and 3(b) are FCPN structures,and consequently 

they belong to the class ℋ. The only difference between them isthat the non-choice transition �� 

is controllable (resp. uncontrollable) in �� (resp. ��). 

 

As a consequence of theorem 6, the sets Δ(��) and Δ(��) are identical, and areidentified by the 

twenty-four minimal elements shown in figure 4, which shows theoutput generated by the above 

mentioned software for ��. The algorithm in references[5,7], finds a series of outer-

approximations  Ψ+ for ∆(�) for an appropriate PNstructure N, that are control invariant with 

respect to N. 

 

The iteration starts with Ψ�, the largest controllable, right-closed subset of the setof initial 

markings for which there is an LESP for the fully-controlled version of N.In the context of this 

example, eight minimal elements identify the right-closed ofinitial markings for which there is an 

LESP for the fully-controllable version of ��shown in figure 4. The second and third among this 

list of eight minimal elements arenot control invariant as��, �� ∈ �5 and 

(0	0	1	0	0	0	0	0	0)~ V�→	(0	0	0	1	0	0	0	0	0)~ V�→	(0	0	0	0	0	0	0	0	0)~ . 
 

The largest controllable subset of this right-closed set is Ψ�,which is identified by the six minimal 

elements shown immediately afterwards in thesame figure. 

 

For any right-closed set of markings Ψ that is control invariant with respect toa PN structure N, 

we can envisage a supervisory policy ℘� that disables the firingof a controllable transition at a 

marking if its firing would result in a new marking that is not in Ψ. It is possible to construct the 

coverability graph for the PN N(m0),under the influence of this supervisory policy. The loop-test 

procedure of reference[7] checks if there is a closed-path identified by ! ∈ �∗ in this coverability 

graph,where (1) every transition in T appears at least once in !, and (2) ��(!) ≥ �, that is,the net 

token-load change after the execution of the string ! is non-negative. 

 

With reference to the examples at hand, the loop-test checks if the above mentioned path-

conditionis satisfied in the coverability graph that is generated by each minimal element 

ofΨ+under the influence of the supervisory policy ℘�. If a minimal element fails this test,it is 

elevated by a set of unit-vectors, which defines a right-closed proper subset ofΨ+. The largest 

controllable subset of this right-closed set is Ψ+��, which used in lieu of Ψ+  in the next iteration. 

 

As shown in figure 4, four minimal elements, 

 

(1	0	0	0	0	0	0	0	0)~ , (0	0	0	0	0	0	1	0	0)~ , (0	0	0	0	0	0	0	1	0)~ , and(0	0	0	0	0	0	0	0	1)~ 

 

that define Ψ� for ��, fail this test. The loop-test will fail for the first minimal 

element(1	0	0	0	0	0	0	0	0)~ ∈ min	(Ψ�), as �-(��, (1	0	0	0	0	0	0	0	0)~) = {��, �q}(⊆ �4). 
But,  

(1	0	0	0	0	0	0	0	0)~ V_→(0	1	0	0	0	0	0	0	0)~and 

(1	0	0	0	0	0	0	0	0)~ V�→(0	0	1	1	0	0	0	0	0)~ . 
Since, (0	1	0	0	0	0	0	0	0)~,	(0	0	1	1	0	0	0	0	0)~ ∉ Ψ�, the supervisorypolicy ℘��would disable 

these transitions at the marking (1	0	0	0	0	0	0	0	0)~,which effectively creates a policy-induced 

deadlock state. The test fails for second,third and fourth minimal elements 
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(0	0	0	0	0	0	1	0	0)~ , (0	0	0	0	0	0	0	1	0)~ , (0	0	0	0	0	0	0	0	1)~ ∈ min(Ψ�), 
as the marking (1	0	0	0	0	0	0	0	0)~ is inevitably reached after the firing of an appropriate set of 

transitions. Specifically, 

(0	0	0	0	0	0	1	0	0)~ V�V__àab (1	0	0	0	0	0	0	0	0)~ , 
(0	0	0	0	0	0	0	1	0)~ V_�V__àab (1	0	0	0	0	0	0	0	0)~ ,	 
and	(0	0	0	0	0	0	0	0	1)~ V__b̀ (1	0	0	0	0	0	0	0	0)~ . 

 

Since the marking (1	0	0	0	0	0	0	0	0)~ failed the loop-test,it follows that these three marking 

would fail the test, as well. 

 

The four minimal elements, that failed the loop-test, are elevated by nine unitvectors, and the 

largest controllable, right-closed set of this newly constructed set isidentified by the twenty-four 

minimal elements shown in figure 4, which identifiesthe next iterate Ψ�. Each of these twenty-

four minimal elements pass the loop-testreferred to earlier, implying that Δ(��) = Ψ�. From 

theorem 6, we infer Δ(��) = Ψ�,as well. 

 

We turn our attention to the iteration scheme for �� where �� is left as a controllabletransition. 

The right-closed set of initial markings for which there is an LESPfor the fully-controlled version 

of �� is identified by the same set of eight minimalelements shown in the initial part of the output 

of figure 4. The largest controllablesubset of this set (Ψ�) is identified by the six minimal 

elements of figure 4 along withthe vector (0	0	1	0	0	0	0	0	0)~. This extra minimal element is due 

to the fact that�� is controllable in ��, which fails the loop-test along with the four that failed 

thetest in figure 4. After the elevation by unit-vectors as described above, the next iterateΨ� has 

the twenty-four minimal elements shown in figure 4 together with eight newelements 

 

(1	0	1	0	0	0	0	0	0)~ , (0	1	1	0	0	0	0	0	0)~ , (0	0	2	0	0	0	0	0	0)~ , (0	0	1	1	0	0	0	0	0)~ , 
(0	0	1	0	1	0	0	0	0)~ , (0	0	1	0	0	0	1	0	0)~ , (0	0	1	0	0	0	0	1	0)~ , (0	0	1	0	0	0	0	0	1)~ 

 

That is, the minimal element (0	0	1	0	0	0	0	0	0)~ of Ψ�is replaced by these eightelements, which 

defines Ψ�. These eight elements fail the loop-test, and are replacedwith additional elevated 

vectors, and so on. The right-closed set that is defined by thisiteration scheme, in the limit, is the 

set Δ(��) described earlier. But, as a computationscheme this procedure will not terminate. This 

issue is mitigated by ensuringthat all controllable, non-choice transitions are interpreted as being 

a part of the setof uncontrollable transitions. This has theoretical sanction as per theorems 5 and 

6.There are other examples where the improvement in runtime is not as dramatic as 

thisillustrative example. 

 

The method isNetFreeChoice() within the class PetriNet of the previous version of the code (cf. 

reference [7]),is replaced by isNetHClass() instead. The program terminates if the PN 

structureunder consideration does not belong to the class H. If the the PN structure belongsto the 

class ℋ, the method relabelNonChoiceTransitions() is used to relabel all controllablenon-choice 

transitions in the PN structure as uncontrollable transitions. Following this, the procedures 

outlined in reference [7] are executed to synthesize theminimally restrictive LESP for the PN 

structure at hand. 
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Figure 3.  (a) The PN structure �� is a member of 

also a member of ℋ. The non-choice transition 

Fromtheorem 6, we infer that ∆(��)
 

4. Concluding Remarks 

 
If some process in a manufacturing system enters into a state of suspended animationfor 

perpetuity, while other events proceed towards completion with no impediment,we say the system 

is in a livelocked-state. Procedures that can 

manufacturing system from entering into livelockedstatesare highly desirable.

 

In this paper we identified two enhancements to the software tool [7] that synthesizesthe 

minimally restrictive, liveness enf

systems modeled using a class of weighted 

 

For the first enhancement, we identified a class of PN structures, 

classes of PN structures where the existe

sufficient to conclude that there is an LESP when the sameinstance is initialized with a larger 

marking. This broadens the scope of the softwaretool of reference [7]. For the second 

enhancement, we showed that the minimallyrestrictive LESP does not control

transitions in the PN model ofthe manufacturing system. This observation plays a crucial role in 

improving thespeed of convergence of the iterative scheme used in the software des

above,which was illustrated by an example.
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is a member of ℋ as it is an FCPN structure. (b) The PN structure 

choice transition �� is controllable (resp. uncontrollable) in 

( ) = ∆(��). 

 

If some process in a manufacturing system enters into a state of suspended animationfor 

perpetuity, while other events proceed towards completion with no impediment,we say the system 

state. Procedures that can synthesize supervisorypolicies that can prevent the 

manufacturing system from entering into livelockedstatesare highly desirable. 

In this paper we identified two enhancements to the software tool [7] that synthesizesthe 

liveness enforcing supervisory policy (LESP) for aclass of manufacturing 

systems modeled using a class of weighted Petri nets (PNs). 

For the first enhancement, we identified a class of PN structures, ℋ, that includesall known 

classes of PN structures where the existence of a LESP for an instanceinitialized at a marking is 

cient to conclude that there is an LESP when the sameinstance is initialized with a larger 

marking. This broadens the scope of the softwaretool of reference [7]. For the second 

howed that the minimallyrestrictive LESP does not control-disable non

transitions in the PN model ofthe manufacturing system. This observation plays a crucial role in 

improving thespeed of convergence of the iterative scheme used in the software des

above,which was illustrated by an example. 
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Figure 4.  The output file generated by the software described in reference [7] for the FCPN structure 
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