
International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol.5, No.3, June 2015

DOI : 10.5121/ijcsea.2015.5301 1

BIO-INSPIRED MODELLING OF SOFTWARE

VERIFICATION BY MODIFIED MORAN PROCESSES

Sven Söhnlein

Method Park Engineering GmbH, Wetterkreuz 19a, Erlangen, Germany

ABSTRACT

A new approach for the control and prediction of verification activities for large safety-relevant software

systems will be presented in this paper. The model is applied on a macroscopic system level and based on

so-called Moran processes, which originate from mathematical biology and allow for the description

ofphenomena as, for instance, genetic drift. Beside the theoretical foundations of this novel approach, its

application on a real-world example from the medical engineering domain will be discussed.

KEYWORDS

Modelling,Simulation, Dependability, Reliability, Software Engineering

1. INTRODUCTION

The development of safety-relevant software systems usually underlies very strict regulations

prescribed by corresponding standards, like the IEC 62304 for medical device software [1], for

example. In order to provide the necessary control and prediction instruments for the required

verification activities of such applications, the use of software reliability models seems to be

reasonable. Here, a huge spectrum of different theoreticalapproaches is available in the literature

(see [2, 3, 4] for an overview). But the problems in the practical implementation of such models

in a real-world software lifecycle process are manifold:

First of all, the usually very strict (and non-verifiable model assumptions [2]) are not flexible

enough to map also in cases of continuous integration paradigms [5] or post-development phases,

where patches or add-ons are integrated [6]. Moreover, these assumptions are usually not implied

from the relevant standards and regulations, but are frequently model-intrinsic [2]. In addition to

that, implications that come from typical management necessities in those areas are

predominantly ignored [7].

With regard to these determining factors, we propose a practical model that applies on a

macroscopic level of large systems and takes into account regulative prescriptions regarding the

lifecycle process, software architecture, as well as planning and management demands. The

introduced model is inspired by mathematical concepts, that were originally applied to describe

biological processes in finite populations.

International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol.5, No.3, June 2015

2

1.1. Paper Structure

The paper is organized as follows: In section 2, the relevant regulative and organisational factors

are determined, which will be used in the following to derive the theoretical basis for the model.

The approach itself will be introduced in section 3. Section 4 illustrates the application of the

model on a real-world system from the medical engineering domain, followed by a conclusion in

section 5.

2. DETERMINING REGULATIVE AND ORGANISATIONAL FACTORS

In order to derive an adequate context-specific model, one has to analyse the implications that

come from the corresponding standards in the particular application domain. In case of medical

device software, the IEC 62304 [1] represents the relevant norm (where it should be stated, that

similar standards exist for other safety-relevant applications, like the ISO 26262 [8] for the

automotive domain, for instance).

In the following, the key-aspects carvedout from the regulative and organisational prescriptions

will be highlighted, and referenced in subsequent sections as a basis for the provided model.

Regulative Factors:

R1. Software Lifecycle Process: The development underlies a strict plan-driven software

lifecycle process (like the V-Model [9] or the Waterfall-Model [9]). This implies particularly that

at least every requirement has to be verified by one (or more) corresponding test casesor by

another adequate verification technique [1].

R2. Software Architecture: The subdivision of the software system into interacting components

and units must be described and documented. With regard to this modularization, software units

represent the smallest atomic parts in the software architecture [1], whereas components in turn

consist of a finite number of units [1].

R3. Quality Management System: The IEC 62304 [1] prescribes a quality management system

(as defined by the ISO 13485 [10], for instance). Thus, it is required to define quality goals and

verify to which extend they are fulfilled.

Organisational Factors:

O1. Verification and Correction Phases: The typical management procedure [11] for the

verification process in the considered domain consists of a timely subdivided organization of

verification and correction phases, which consist of a certain subset of the overall number of

planned test cases.

O2. Impact Analysis:In advance to every correction, an impact analysis [12] is performed in

order to reveal the number of units that will be “touched” in the subsequent correction phase.

O3. Statistical Process Control: Statistical process control [13] is performed with the intentto

derive measures (considering the progress of verification and correction activities)from past

projectswith regard to the current or upcoming one.

International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol.5, No.3, June 2015

3

Delimitation of Consideration:

Further, the scope of consideration will be delimited as follows:

D1. Classification of Software Units:Software units represent the smallest parts of consideration

and will be classified as ‘correct’ XOR ‘faulty’ (with no further distinction regarding the involved

code parts).

D2. Correction of Faults: Faulty software units which are corrected during a verification and

correction phase, change their classification status from ‘faulty’ to ‘correct’.

D3. Insertion of Faults:The correction process is not perfect, i.e. it also has the potential to inject

new faults into the system, which is represented by a change of the classification status of a

software unit from ‘correct’ to ‘faulty’.

Taking all these aspects into account, the following relation between the relevant elements of the

verification and correction process can be established (see figure 1), where���(with� = 1,… ,)

denotes a requirement,
��(with� = 1,… ,�) a test case,
�(with� = 1,… , �) a software unit and

��(with� = 1,… , �) a component:

Each requirement is at least verified by one or more test cases (with regard to assumption R1),

where test cases “spot” the ‘faulty’ (or ‘correct’) units within certain components of the system

(with regard to assumptions R2 and D1). The software units to be “touched” in the subsequent

correction phase are revealed by the performed impact analysis (with regard to assumption O2).

These software units might thereby change its classification status from ‘faulty’ to ‘correct’

(which is the more probable case) but possibly also from ‘correct’ to ‘faulty’ (with regard to

assumptions D2 and D3).

International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol.5, No.3, June 2015

4

Figure 1. Relation between verification and correction elements

International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol.5, No.3, June 2015

5

3. MODELLING SOFTWARE VERIFICATION VIA MORAN PROCESSES

Moran processes are stochastic models that originate from mathematical biology and are used to

describe, for instance, mutations in finite populations (see [14, 15] for an introduction). In the

basic model, a finite population of size � ∈ ℕ consists of two alleles (let’s say ‘green’ and ‘red’),

which are competing for dominance. In each time step, a random individual is chosen for

reproduction and another one is chosen for death, thus ensuring a constant population size. The

“fitness” of the alleles hereby determines how likely they are to be chosen for reproduction and

thereforeaffects the time for fixation (i. e. the time for taking over the whole population).

In order to map this biological model to theconsidered software context, the discussed aspects

from section 2 are addressed as follows: The whole software system (which can be interpreted as

the DNA [16]) consists of components (DNA Segments) that consist of a finite population of

units (genes [16]). Those units (genes) can be classified into two categories (alleles [16]) marked

‘correct’ (green) XOR ‘faulty’ (red). A single unit can shift its classification (allel) from ‘correct’

to ‘faulty’ or from ‘faulty’ to ‘correct’ in one time step (which represents the mutation process

[16]). This means that the whole verification and correction process can be considered as the

genetic drift [16] in the software system, where the goodness of the process is affected by the

fitness of the alleles. Table 2 shows an overview of the corresponding elements from both worlds.

Table 1. Mapping oftechnical and biological elements

Software World Biological World

Software System DNA

Component DNA Segment

Unit Gene

Classification of a unit {‘correct’, ‘faulty’} Allel {‘green’, ‘red’}

Correction of a fault / Insertion of a fault Mutation

Verification and correction process Genetic drift

Goodness of the verification and correction activities Fitness

In accordance to this mapping, the verification and correction process can be described by an

irreducible ergodic discrete-time Markov chain (DTMC [15])

(��) with
	∈	ℕ

where (��) denotes the family of random variables (indexed by the discrete time
). The process

underlies a finite state space � ∈ ℕ, where

|�| = � + 1

and �∈	ℕ represents the number of software units in the system. Every state �	∈	� (with � =
0, … , �) is hereby associated with a software system consisting of � correct (verified) software

units (and � − � faulty units).

International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol.5, No.3, June 2015

6

With regard to assumption O1 (see section 2), it is assumed that in verification and correction

phase ���� (with �∈	ℕ and � = 1,… , �) where � represents the overall number of verification

and correction phases, we reach a certain state �.Then, the required impact analysis (see

assumption O2) will reveal the number of software units, that is “touched” in the next verification

and correction phase ���� !and therefore implies the expected number of time steps for the

Moran process in the subsequent phase (see figure 2 for an illustration).

Figure 2. Verification and correction phases (����) in the Moran process

Therefore, the DTMC for the Moran Process described above can be defined by the |�| × |�|
transition matrix#, where the entries of# are specified as

#�,� ! =
φ� ∙ �

φ� ∙ � + � − �
∙ � − �� for 0 ≤ � < � (1)

#�,�'! =
� − �

φ� ∙ � + � − �
∙ �� for 0 < � ≤ � (2)

#�,� = 1 − #�,�'! − #�,� ! for 0 < � < � (3)

#�,� = 1 for � = 0	∨		� = � (4)

and all other entries of #are zero, which results in a triangular matrix. Here, φ� represents the

mentioned phase-specific “fitness” of the verification and correction activities and can be derived

by statistical process control techniques (see assumption O3 in section 2). A coarse

approximation of φ� might be estimated by the fraction of successfully corrected components in

relation to the inserted faults. Note that in contrast to the original Moran process model [14], the

fitness is not fixed here, but changes in accordance to the phase of the whole verification and

correction process, which is reasonable with regard to the different preconditions in each phase.

In general, φ� can be categorized as follows:

φ� > 1: This is the usual and expected case, where (significantly) more faults are

detected and corrected than injected.

φ� = 1: In this case, we have a “neutral” drift (and an unsystematic verification and

correction process).

φ� < 1: This is the unusual and unexpected case, where more new faults are injected in

the system than detected and corrected.

i-1	 i+1	i	

���� ���� !

International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol.5, No.3, June 2015

7

The defined Moran process is initialized by the start vector +(,) with entries

+-(,) = 1 for . = 1 (5)

+-(,) = 0 for . ≠ 1 (6)

which means that at least one correct unit is available at the beginning. Further, we denote by 0�

(with 0�∈	ℕ and 0� = 0,… , �)the number of software units to be touched in a certain����(see

the presumed impact analysis O2). Then, if the first verification and correction phase ���!
reveals, that the number of software units to be touched in this phase is 0!, than the state vector of

the Moran process at this stage is computed by

+(!) = +(,) ∙ #(12) (7)

More generally, if in phase ����, we reach a certain state � (which is associated with a software

system of already � verified software units),than the state vector for phase ���� ! is computed by

+(� !) = +(�) ∙ #(1342) (8)

with

+-(�) = 1 for . = � (9)

+-(�) = 0 for . ≠ � (10)

Moreover, by

σ� = max
-9,,…,:

+-(�) (11)

the most probable state .;<=(�) at ����can be determined with

+->?@(�) = σ� (12)

In order to estimate, if predefined reliability targets (see assumption R3) are met (in terms of the

minimum number of components that have to be correct after a certain verification and correction

phase), we denote by A;�B(C�) the probability, that in phase ���� we have at least C� correct

components, which can be computed by

A;�B(C�) = D +-(�)
:

-9E3
 (13)

International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol.5, No.3, June 2015

8

4. EXAMPLE APPLICATION

In this section, the application of the model on a real-world system (from the medical engineering

domain) will be discussed.The model was applied in order to assess the progress of the

verification and correction activities, with a specific focus on the reachability of the predefined

reliability targets. The system consisted of an overall number of � = 363 software units. The

verification and correction process was subdivided into � = 5 phases. Table 2 shows the number

of software units 0� that were touched in each phase (estimated by the corresponding impact

analysis), the verification fitness φ�for each phase (estimated by the application of the previously

mentioned statistical process control techniques), the predefined reliability targetC� for each

phase (as an outcome from the project and risk management activities)as well as the computed

measures according to equations (1) – (13) from section 4.

Table 2. Computed measures for the example system

� 0�
0�
� ∙ 100% Σ0� Σ13: ∙ 100% φ� C�

C�
� ∙ 100% .;<=(�) A;�B(C�)

1 114 31,40 114 31,40 37,96 72,60 20,00 65 0.14

2 95 26,17 209 57,57 18,79 163,35 45,00 168 0.69

3 74 20,39 283 77,96 13,67 235,95 65,00 234 0.40

4 53 14,60 336 92,56 11,32 290,40 80,00 293 0.87

5 27 7,44 363 100,00 9,41 326,70 90,00 337 0.99

If we look at the predefined reliability target C� and the computed most probable state .;<=(�) for

each phase, we can see how the predefinition differs from the prediction according to the varying

fitness and number of touched components in each phase. While for phases ���K, ���L and ���M,

the most probable states are pretty close to the predefined targets, the discrepancies in phases

���! and ���N are comparatively high. And apart from ���!and ���L, the predefined targets

underestimated the most probable states in this case, which is also illustrated in figure 3. But this

might be a little bit misleading with regard to the computed probabilities A;�B(C�) of reaching

the predefined goals. Here, only ���M and ���N establish a substantial confidence in the

reachability of the predefined quality goals, which is also shown in figure 4.

International Journal of Computer Science, Engineering and Applications (

Figure 3. Comparison of predefined and predicted measures

Figure 4. Evolving probability of meeting the

The computed measures illustrate

targets for the verification an correction

5. CONCLUSIONS

In this paper, a novel approach for

software systems was introduced. Beside the derivation of the theoretical foundations of th

model, its application on a real

International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol.5, No.3, June 2015

Figure 3. Comparison of predefined and predicted measures

Figure 4. Evolving probability of meeting the predefined targets

lustrate how the introduced model can be utilized to adjustpredefined

the verification an correction phases.

roach for the support of correction processes of large safety

was introduced. Beside the derivation of the theoretical foundations of th

its application on a real-world example was also shown. Thereby it could be

IJCSEA) Vol.5, No.3, June 2015

9

to adjustpredefined

safety-relevant

was introduced. Beside the derivation of the theoretical foundations of this

world example was also shown. Thereby it could be

International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol.5, No.3, June 2015

10

demonstrated, how this technique can serve as an instrument for the planning and control of the

verification activities in such an environment.

REFERENCES

[1] International Electrotechnical Commission: Medical device software - Software life-cycle processes,

IEC62304:2006 (2006).

[2] M. R. Lyu (Editor), Handbook of Software Reliability Engineering, IEEE Computer Society Press,

McGraw-Hill, 1996.

[3] J. D. Musa, Software Reliability Engineering, McGraw-Hill, 1999.

[4] D. P. Siewiorek and R. S. Swarz, The Theory and Practice of Reliable System Design,Digital Press,

1982.

[5] P. M. Duvall et al., Continuous Integration: Improving Software Quality and Reducing Risk,

Addison-Wesley, 2007.

[6] S. S. Yau and J. S. Collofello, “Design Stability Measures for Software Maintenance”, IEEE

Transactions on Software Engineering, Vol. 11 (9), pp. 84-856, 1985.

[7] S. R. Rakitin, Software Verification and Validation for Practitioners and Managers, 2nd ed., Artech

House, Inc., 2001.

[8] ISO 26262-1:2011(en) Road vehicles - Functional safety, International Standardization Organization

(2011).

[9] I. Sommerville, Software Engineering, 9th ed., Pearson, 2012.

[10] ISO 13485:2003 Medical devices - Quality management systems - Requirements for regulatory

purposes (2003).

[11] M. Pol et al., Software Testing: A Guide to the TMap Approach, Addison-Wesley Professional, 2001.

[12] K. Fisler et al.,"Verification and change-impact analysis of access-control policies", Proceedings of

the 27th international conference on Software engineering, ACM, 2005.

[13] J. S. Oakland, Statistical process control, Routledge, 2008.

[14] P. A. P. Moran, "Random processes in genetics", Mathematical Proceedings of the Cambridge

Philosophical Society, Vol. 54. (1), Cambridge University Press, 1958.

[15] M. A. Nowak, Evolutionary dynamics, Harvard University Press, 2006.

[16] K. S. Trivedi, Probability & Statistics with Reliability, Queuing and Computer Science Applications,

PHI Learning Pvt. Limited, 2011.

AUTHOR

Dr. Sven Söhnlein received a PhD in Engineering and a MSc in Computer Science from the University of

Erlangen-Nürnberg (Germany). Until 2014 he was a Senior Researcher at the University of Erlangen-

Nürnberg and is currently working for the company Method Park Engineering GmbH.

