
International Journal of Information Technology Convergence and Services (IJITCS) Vol.1, No.5, October 2011 

DOI : 10.5121/ijitcs.2011.1506                                                                                                                   49 

 

 

  

GLOBAL CHAOS SYNCHRONIZATION OF PAN AND 

LÜ CHAOTIC SYSTEMS VIA ADAPTIVE CONTROL 

 Sundarapandian Vaidyanathan
1
 and Karthikeyan Rajagopal

2 

1
Research and Development Centre, Vel Tech Dr. RR & Dr. SR Technical University 

Avadi, Chennai-600 062, Tamil Nadu, INDIA 
sundarvtu@gmail.com 

2
School of Electronics and Electrical Engineering, Singhania University  

Dist. Jhunjhunu, Rajasthan-333 515, INDIA 
 rkarthiekeyan@gmail.com     

ABSTRACT 

This paper deploys adaptive control method to derive new results for the global chaos synchronization of 

identical Pan systems (2010), identical Lü systems (2002), and non-identical Pan and Lü chaotic systems.  

Adaptive control method is deployed in this paper for the general case when the system parameters are 

unknown. Sufficient conditions for global chaos synchronization of identical Pan systems, identical Lü 

systems and non-identical Lü and Pan systems are derived by deploying adaptive control theory and 

Lyapunov stability theory. Since the Lyapunov exponents are not required for these calculations, the 

adaptive control method is suitable for achieving the global chaos synchronization of the chaotic systems 

discussed in this paper. Numerical simulations are shown to illustrate the adaptive synchronization 

schemes derived in this paper for the Pan and Lü chaotic systems. 
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1. INTRODUCTION 

Chaos is an interesting nonlinear phenomenon and has been extensively studied in the last two 

decades [1-40]. The first chaotic system was discovered by Lorenz [1] in 1963, when he was 

studying weather patterns.  

Chaotic systems are highly sensitive to initial conditions and the sensitive nature of chaotic 

systems is called as the butterfly effect [2]. Chaos theory has been applied in many scientific 

disciplines such as Mathematics, Computer Science, Microbiology, Biology, Ecology, 

Economics, Population Dynamics and Robotics. 

In 1990, Pecora and Carroll [3] deployed control techniques to synchronize two identical 

chaotic systems and showed that it was possible for some chaotic systems to be completely 

synchronized. From then on, chaos synchronization has been widely explored in a variety of 

fields including physical systems [4,5], chemical systems [6], ecological systems [7], secure 

communications [8-10], etc. 

In most of the chaos synchronization approaches, the master-slave or drive-response formalism 

is used. If a particular chaotic system is called the master or drive system and another chaotic 

system is called the slave or response system, then the idea of the synchronization is to use the 

output of the master system to control the slave system so that the output of the slave system 

tracks the output of the master system asymptotically. The seminal work on chaos 

synchronization was published by Pecora and Carroll in 1990 [3]. 
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In the last few decades, a variety of impressive approaches have been proposed for the global 

chaos synchronization of chaotic systems such as the OGY method [11], active control method 

[12-16], adaptive control method [17-22], sampled-data feedback synchronization method [23], 

time-delay feedback method [24], backstepping method [25-26], sliding mode control method 

[27-32], etc.  

In this paper, we investigate the global chaos synchronization of uncertain chaotic systems, viz. 

identical Pan systems ([33], 2010), identical Lü systems ([34], 2002) and non-identical Pan and 

Lü systems.  Pan system (Pan, Xu and Zhou, 2010) and Lü system (Lü and Chen, 2002) are 

important paradigms of three-dimensional chaotic systems. In our adaptive controller design, we 

consider the general case when the parameters of the chaotic systems are unknown. 

This paper is organized as follows. In Section 2, we provide a description of the chaotic 

systems addressed in this paper, viz. Pan system (2010) and Lü system (2002). In 

Section 3, we discuss the adaptive synchronization of identical Pan systems. In Section 

4, we discuss the adaptive synchronization of identical Lü systems. In Section 5, we 

discuss the adaptive synchronization of non-identical Pan and Lü systems. In Section 6, 

we summarize the main results obtained in this paper. 

 2. SYSTEMS DESCRIPTION 

The Pan system ([33], 2010) is described by the dynamics 

1 2 1

2 1 1 3

3 3 1 2

( )x x x

x x x x

x x x x

α

γ

β

= −

= −

= − +

&

&

&

        (1) 

where 1 2 3, ,x x x are the states and , ,α β γ are positive, constant parameters of the system.  

The Pan system (1) is chaotic when the parameter values are taken as 

  10,  8 / 3α β= =   and   16γ =                                        

The state orbits of the Pan chaotic system (1) are shown in Figure 1. 

The Lü system ([34], 2002) is described by the dynamics 

1 2 1

2 2 1 3

3 3 1 2

( )x a x x

x cx x x

x bx x x

= −

= −

= − +

&

&

&

        (2) 

where 1 2 3, ,x x x are the states and , ,a b c are positive, constant parameters of the system.  

The Lü system (2) is chaotic when the parameter values are taken as 

  36,  3a b= =   and   20c =                                        

The state orbits of the Lü chaotic system (2) are shown in Figure 2. 
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Figure 1.  State Orbits of the Pan System 

 

Figure 2.  State Orbits of the Lü System 
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3. ADAPTIVE SYNCHRONIZATION OF IDENTICAL PAN SYSTEMS 

3.1 Theoretical Results 

In this section, we deploy adaptive control to achieve new results for the global chaos 

synchronization of identical hyperchaotic Pan systems ([33], 2010), where the parameters of the 

master and slave systems are unknown.  

As the master system, we consider the Pan dynamics described by 

1 2 1

2 1 1 3

3 3 1 2

( )x x x

x x x x

x x x x

α

γ

β

= −

= −

= − +

&

&

&

                 (3) 

where 
1 2 3, ,x x x are the states and , ,α β γ are unknown, real ,constant parameters of the system. 

As the slave system, we consider the controlled Pan dynamics described by 

1 2 1 1

2 1 1 3 2

3 3 1 2 3

( )y y y u

y y y y u

y y y y u

α

γ

β

= − +

= − +

= − + +

&

&

&

                (4) 

where 1 2 3, ,y y y are the states and 1 2 3, ,u u u are the nonlinear controllers to be designed. 

The chaos synchronization error is defined by 

   

1 1 1

2 2 2

3 3 3

e y x

e y x

e y x

= −

= −

= −

                (5) 

The error dynamics is easily obtained as 

1 2 1 1

2 1 1 3 1 3 2

3 3 1 2 1 2 3

( )e e e u

e e y y x x u

e e y y x x u

α

γ

β

= − +

= − + +

= − + − +

&

&

&

         (6) 

Let us now define the adaptive control functions  

  

1 2 1 1 1

2 1 1 3 1 3 2 2

3 3 1 2 1 2 3 3

ˆ( ) ( )

ˆ( )

ˆ( )

u t e e k e

u t e y y x x k e

u t e y y x x k e

α

γ

β

= − − −

= − + − −

= + − −

      (7) 

where ˆˆ ,α β and  γ̂ are estimates of ,α β and ,γ respectively, and , ( 1, 2,3)ik i = are positive 

constants. 
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Substituting (7) into (6), the error dynamics simplifies to 

  

1 2 1 1 1

2 1 2 2

3 3 3 3

ˆ( )( )

ˆ( )

ˆ( )

e e e k e

e e k e

e e k e

α α

γ γ

β β

= − − −

= − −

= − − −

&

&

&

        (8) 

Let us now define the parameter estimation errors as 

  ˆˆ ,   e eα βα α β β= − = −   and  ˆeγ γ γ= −             (9) 

Substituting (9) into (8), we obtain the error dynamics as 

 

1 2 1 1 1

2 1 2 2

3 3 3 3

( )e e e e k e

e e e k e

e e e k e

α

γ

β

= − −

= −

= − −

&

&

&

         (10) 

For the derivation of the update law for adjusting the estimates of the parameters, the Lyapunov 

approach is used. 

We consider the quadratic Lyapunov function defined by 

  ( )2 2 2 2 2 2

1 2 3 1 2 3

1
( , , , , , ) ,

2
V e e e e e e e e e e e eα β γ α β γ= + + + + +       (11) 

which is a positive definite function on 
6.R  

We also note that 

         ˆˆ ,  e eα βα β= − = −
&&& &    and   ˆeγ γ= − &&         (12) 

Differentiating (11) along the trajectories of (10) and using (12), we obtain 

     2 2 2 2

1 1 2 2 3 3 1 2 1 3 1 2
ˆˆ ˆ( )V k e k e k e e e e e e e e e eα β γα β γ    = − − − + − − + − − + −     

&& &&  (13) 

In view of Eq. (13), the estimated parameters are updated by the following law: 

        

1 2 1 4

2

3 5

1 2 6

ˆ ( )

ˆ

ˆ

e e e k e

e k e

e e k e

α

β

γ

α

β

γ

= − +

= − +

= +

&

&

&

          (14) 

where 4 5,k k and 6k are positive constants. 
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Substituting (14) into (13), we obtain 

         
2 2 2 2 2 2

1 1 2 2 3 3 4 5 6V k e k e k e k e k e k eα β γ= − − − − − −&               (15) 

which is a negative definite function on 
6.R  

Thus, by Lyapunov stability theory [35], it is immediate that the synchronization error 

, ( 1, 2,3)ie i = and the parameter estimation error , ,e e eα β γ decay to zero exponentially with 

time.  

Hence, we have proved the following result. 

Theorem 1. The identical Pan  systems (3) and (4) with unknown parameters are globally and 

exponentially synchronized via the adaptive control law (7), where the update law for the 

parameter estimates is given by (14) and , ( 1, 2, ,6)ik i = K are positive constants. Also, the 

parameter estimates ˆˆ ( ), ( )t tα β and ˆ( )tγ exponentially converge to the original values of the 

parameters ,α β and ,γ respectively, as .t → ∞ � 

3.2 Numerical Results 

For the numerical simulations, the fourth-order Runge-Kutta method with time-step 
610h

−= is 

used to solve the hyperchaotic systems (3) and (4) with the adaptive control law (14) and the 

parameter update law (14) using MATLAB.  

We take   

4ik = for 1,2, ,6.i = K  

For the Pan systems (3) and (4), the parameter values are taken as 

10,   8 / 3,   16α β γ= = =  

Suppose that the initial values of the parameter estimates are 

  ˆˆ ˆ(0) 3,   (0) 5,  (0) 1α β γ= = =  

The initial values of the master system (3) are taken as 

 1 2 3(0) 12,   (0) 5,   (0) 9x x x= = =  

The initial values of the slave system (4) are taken as 

   1 2 3(0) 7,   (0) 6,   (0) 10y y y= = =  

Figure 3 depicts the global chaos synchronization of the identical Pan systems (3) and (4).   

 Figure 4 shows that the estimated values of the parameters, viz. ˆˆ ( ), ( )t tα β and ˆ( )tγ converge 

exponentially to the system parameters    10,   8 / 3α β= = and  16,γ =  as .t → ∞  
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Figure 3.  Complete Synchronization of Pan Systems 

 

Figure 4.  Parameter Estimates ˆˆ ˆ( ), ( ), ( )t t tα β γ  
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4. ADAPTIVE SYNCHRONIZATION OF IDENTICAL LÜ SYSTEMS 

4.1 Theoretical Results 

In this section, we deploy adaptive control to achieve new results for the global chaos 

synchronization of identical Lü systems ([34], 2002), where the parameters of the master and 

slave systems are unknown. 

As the master system, we consider the Lü dynamics described by 

1 2 1

2 2 1 3

3 3 1 2

( )x a x x

x cx x x

x bx x x

= −

= −

= − +

&

&

&

                  (16) 

where 
1 2 3, ,x x x are the state variables and , ,a b c are unknown, real ,constant parameters of the 

system. 

As the slave system, we consider the controlled Lü dynamics described by 

1 2 1 1

2 2 1 3 2

3 3 1 2 3

( )y a y y u

y cy y y u

y by y y u

= − +

= − +

= − + +

&

&

&

                (17) 

where 1 2 3, ,y y y are the state variables and 1 2 3, ,u u u are the nonlinear controllers to be designed. 

The chaos synchronization error is defined by 

  

1 1 1

2 2 2

3 3 3

e y x

e y x

e y x

= −

= −

= −

                 (18) 

The error dynamics is easily obtained as 

1 2 1 1

2 2 1 3 1 3 2

3 3 1 2 1 2 3

( )e a e e u

e ce y y x x u

e be y y x x u

= − +

= − + +

= − + − +

&

&

&

          (19) 

Let us now define the adaptive control functions  

  

1 2 1 1 1

2 2 1 3 1 3 2 2

3 3 1 2 1 2 3 3

ˆ( ) ( )

ˆ( )

ˆ( )

u t a e e k e

u t ce y y x x k e

u t be y y x x k e

= − − −

= − + − −

= − + −

      (20) 

where ˆˆ,a b and ĉ are estimates of ,a b and ,c respectively, and , ( 1, 2,3)ik i = are positive 

constants. 
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Substituting (20) into (19), the error dynamics simplifies to 

  

1 2 1 1 1

2 2 2 2

3 3 3 3

ˆ( )( )

ˆ( )

ˆ( )

e a a e e k e

e c c e k e

e b b e k e

= − − −

= − −

= − − −

&

&

&

         (21) 

Let us now define the parameter estimation errors as 

   ˆˆ,  a be a a e b b= − = −  and  ˆ
ce c c= −                (22) 

Substituting (22) into (21), we obtain the error dynamics as 

1 2 1 1 1

2 2 2 2

3 3 3 3

( )a

c

b

e e e e k e

e e e k e

e e e k e

= − −

= −

= − −

&

&

&

            (23) 

We consider the quadratic Lyapunov function defined by 

       ( )2 2 2 2 2 2

1 2 3 1 2 3

1
( , , , , , ) ,

2
a b c a b c

V e e e e e e e e e e e e= + + + + +       (24) 

which is a positive definite function on 
6.R  

We also note that 

         ˆˆ,  a be a e b= − = −
&&& &    and   ˆ

ce c= − &&          (25) 

Differentiating (24) along the trajectories of (23) and using (25), we obtain 

     
2 2 2 2 2

1 1 2 2 3 3 1 2 1 3 2
ˆˆ ˆ( )a b cV k e k e k e e e e e a e e b e e c    = − − − + − − + − − + −     

&& &&    (26) 

In view of Eq. (26), the estimated parameters are updated by the following law: 

        

1 2 1 4

2

3 5

2

2 6

ˆ ( )

ˆ

ˆ

a

b

c

a e e e k e

b e k e

c e k e

= − +

= − +

= +

&

&

&

          (27) 

where   ,  ( 4,5,6)ik i = are positive constants. 

Substituting (14) into (12), we obtain 

         
2 2 2 2 2 2

1 1 2 2 3 3 4 5 6a b cV k e k e k e k e k e k e= − − − − − −&               (28) 

which is a negative definite function on 
6.R  
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Thus, by Lyapunov stability theory [35], it is immediate that the synchronization error 

, ( 1,2,3)ie i = and the parameter estimation error , ,a b ce e e decay to zero exponentially with 

time.  

Hence, we have proved the following result. 

Theorem 2. The identical Lü  systems (16) and (17) with unknown parameters are globally and 

exponentially synchronized via the adaptive control law (20), where the update law for the 

parameter estimates is given by (27) and , ( 1,2, ,6)ik i = K are positive constants. Also, the 

parameter estimates ˆˆ( ), ( )a t b t and ˆ( )c t exponentially converge to the original values of the 

parameters ,a b and ,c respectively, as .t → ∞ � 

4.2 Numerical Results 

For the numerical simulations, the fourth-order Runge-Kutta method with time-step 
610h

−= is 

used to solve the chaotic systems (16) and (17) with the adaptive control law (20) and the 

parameter update law (27) using MATLAB.  

We take  4ik = for 1,2, ,8.i = K  

For the Lü systems (16) and (17), the parameter values are taken as 

  36,   3,   20a b c= = =                       

Suppose that the initial values of the parameter estimates are 

  ˆˆ ˆ(0) 16,   (0) 8,   (0) 4a b c= = =  

The initial values of the master system (16) are taken as 

 
1 2 3(0) 11,   (0) 27,   (0) 5x x x= = =  

The initial values of the slave system (17) are taken as 

   1 2 3(0) 29,   (0) 15,   (0) 18y y y= = =  

Figure 5 depicts the global chaos synchronization of the identical Lü systems (16) and (17).  

Figure 6 shows that the estimated values of the parameters, viz. ˆˆ( ), ( )a t b t  and ˆ( )c t converge 

exponentially to the system parameters  

   36,  3a b= = and    20c =    

as .t → ∞  
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Figure 5.  Complete Synchronization of Lü Systems 

 

Figure 6.  Parameter Estimates ˆˆ ˆ( ),  ( ),  ( )a t b t c t  
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5. ADAPTIVE SYNCHRONIZATION OF PAN AND LÜ SYSTEMS 

5.1 Theoretical Results 

In this section, we discuss the global chaos synchronization of non-identical Pan system ([33], 

2010) and Lü system ([34], 2002), where the parameters of the master and slave systems are 

unknown. 

As the master system, we consider the Pan dynamics described by 

1 2 1

2 1 1 3

3 3 1 2

( )x x x

x x x x

x x x x

α

γ

β

= −

= −

= − +

&

&

&

            (29) 

where 
1 2 3, ,x x x are the state variables and , ,α β γ  are unknown, real ,constant parameters of the 

system. 

As the slave system, we consider the controlled Lü dynamics described by 

  

1 2 1 1

2 2 1 3 2

3 3 1 2 3

( )y a y y u

y cy y y u

y by y y u

= − +

= − +

= − + +

&

&

&

         (30) 

where 1 2 3, ,y y y are the state variables , , ,a b c are unknown, real, constant parameters of 

the system and 1 2 3, ,u u u are the nonlinear controllers to be designed. 

The synchronization error is defined by 

  ,   ( 1, 2,3)i i ie y x i= − =                (31) 

 The error dynamics is easily obtained as 

1 2 1 2 1 1

2 2 1 1 3 1 3 2

3 3 3 1 2 1 2 3

( ) ( )e a y y x x u

e cy x y y x x u

e by x y y x x u

α

γ

β

= − − − +

= − − + +

= − + + − +

&

&

&

         (32) 

Let us now define the adaptive control functions  

  

1 2 1 2 1 1 1

2 2 1 1 3 1 3 2 2

3 3 3 1 2 1 2 3 3

ˆˆ( ) ( ) ( )

ˆˆ( )

ˆ ˆ( )

u t a y y x x k e

u t cy x y y x x k e

u t by x y y x x k e

α

γ

β

= − − + − −

= − + + − −

= − − + −

        (33) 

where ˆˆ ˆ, , ,a b c ˆˆ ,α β and γ̂ are estimates of , , ,a b c ,α β and  ,γ  respectively, and 1,k 2 ,k 3k are 

positive constants. 
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Substituting (33) into (32), the error dynamics simplifies to 

  

1 2 1 2 1 1 1

2 2 1 2 2

3 3 3 3 3

ˆˆ( )( ) ( )( )

ˆˆ( ) ( )

ˆ ˆ( ) ( )

e a a y y x x k e

e c c y x k e

e b b y x k e

α α

γ γ

β β

= − − − − − −

= − − − −

= − − + − −

&

&

&

       (34) 

Let us now define the parameter estimation errors as 

   ˆ ˆˆ ˆˆ ˆ,   ,  ,  ,  ,  
a b c

e a a e b b e c c e e eα β γα α β β γ γ= − = − = − = − = − = −        (35) 

Substituting (35) into (34), we obtain the error dynamics as 

   

1 2 1 2 1 1 1

2 2 1 2 2

3 3 3 3 3

( ) ( )a

c

b

e e y y e x x k e

e e y e x k e

e e y e x k e

α

γ

β

= − − − −

= − −

= − + −

&

&

&

              (36) 

We consider the quadratic Lyapunov function defined by 

  ( )2 2 2 2 2 2 2 2 2

1 2 3

1
,

2
a b cV e e e e e e e e eα β γ= + + + + + + + +       (37) 

which is a positive definite function on 
9.R  

We also note that 

           ˆ ˆˆ ˆˆ ˆ,  ,  ,  ,  ,  a b ce a e b e c e e eα β γα β γ= − = − = − = − = − = −
& && && && & & & & &          (38) 

Differentiating (37) along the trajectories of (36) and using (38), we obtain 

  

2 2 2

1 1 2 2 3 3 1 2 1 3 3 2 2

1 2 1 3 3 2 1

ˆˆ ˆ( )

ˆˆ ˆ        ( )

a b cV k e k e k e e e y y a e e y b e e y c

e e x x e e x e e xα β γα β γ

    = − − − + − − + − − + −     

    + − − − + − + − −     

&& &&

&& &

  (39) 

In view of Eq. (39), the estimated parameters are updated by the following law: 

         

1 2 1 4 1 2 1 7

3 3 5 3 3 8

2 2 6 2 1 9

ˆˆ ( ) ,           ( )

ˆ ˆ,                   

ˆˆ ,                               

a

b

c

a e y y k e e x x k e

b e y k e e x k e

c e y k e e x k e

α

β

γ

α

β

γ

= − + = − − +

= − + = +

= + = − +

&&

& &

&&

       (40) 

where , ( 4, ,9)ik i = K  are positive constants. 
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Substituting (40) into (39), we obtain 

         
2 2 2 2 2 2 2 2 2

1 1 2 2 3 3 4 5 6 7 8 9a b cV k e k e k e k e k e k e k e k e k eα β γ= − − − − − − − − −&                (41) 

which is a negative definite function on 
9.R  

Thus, by Lyapunov stability theory [35], it is immediate that the synchronization error 

, ( 1,2,3)ie i = and all the parameter estimation errors decay to zero exponentially with time.  

Hence, we have proved the following result. 

Theorem 3. The non-identical Pan system (29) and Lü system (30) with unknown parameters 

are globally and exponentially synchronized via the adaptive control law (33), where the update 

law for the parameter estimates is given by (40) and , ( 1,2, ,9)ik i = K  are positive constants. 

Also, the parameter estimates ˆˆ ˆ( ), ( ), ( ),a t b t c t ˆˆ ( ), ( )t tα β and ˆ( )tγ exponentially converge to the 

original values of the parameters , , , ,a b c α β and ,γ respectively, as .t → ∞ � 

5.2 Numerical Results 

For the numerical simulations, the fourth-order Runge-Kutta method with time-step 
610h

−= is 

used to solve the hyperchaotic systems (29) and (30) with the adaptive control law (33) and the 

parameter update law (40) using MATLAB.  

We take 4ik = for 1,2, ,9.i = K   

For the Lü and Pan systems, the parameters of the systems are chosen so that the 

systems are chaotic (see Section 2). 

Suppose that the initial values of the parameter estimates are 

   ˆ ˆˆ ˆˆ ˆ(0) 2,  (0) 4,  (0) 10,  (0) 5,   (0) 9,  (0) 7a b c α β γ= = = = = =  

The initial values of the master system (29) are taken as 

          1 2 3(0) 17,   (0) 24,   (0) 12x x x= = =  

The initial values of the slave system (30) are taken as 

          1 2 3(0) 26,   (0) 5,   (0) 11y y y= = =  

Figure 7 depicts the global chaos synchronization of Pan and Lü systems.  

Figure 8 shows that the estimated values of the parameters, viz. ˆ( ),a t  ˆ( ),b t  ˆ( ),c t   ˆ ( ),tα  ˆ( )tβ    

and ˆ ( )tγ  converge exponentially to the system parameters     

36,a = 3,b = 20,c = 10,α = 8 / 3β =    and 16,γ =  respectively, as .t → ∞  
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Figure 7.  Complete Synchronization of Pan and Lü Systems 

 

Figure 8.  Parameter Estimates ˆ ˆˆ ˆˆ ˆ( ), ( ), ( ), ( ), ( ), ( )a t b t c t t t tα β γ  
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6. CONCLUSIONS 

In this paper, we have derived new results for the adaptive synchronization of identical Pan 

systems (2010), identical Lü systems (2002) and non-identical Pan and Lü systems with 

unknown parameters. The adaptive synchronization results derived in this paper are established 

using adaptive control theory and Lyapunov stability theory. Since the Lyapunov exponents are 

not required for these calculations, the adaptive control method is a very suitable for achieving 

global chaos synchronization for the uncertain chaotic systems addressed in this paper. 

Numerical simulations are shown to validate and demonstrate the effectiveness of the adaptive 

synchronization schemes derived in this paper for the global chaos synchronization of the 

chaotic systems addressed in this paper. 
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