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ABSTRACT

This paper derives new adaptive synchronizers for the hybrid synchronization of hyperchaotic Zheng
systems (2010) and hyperchaotic Yu systems (2012). In the hybrid synchronization design of master and
dave systems, one part of the systems, viz. their odd states, are completely synchronized (CS), while the
other part, viz. their even states, are completely anti-synchronized (AS) so that CS and AS co-exist in the
process of synchronization. The research problem gets even more complicated, when the parameters of the
hyperchaotic systems are not known and we handle this complicate problem using adaptive control. The
main results of this research work are established via adaptive control theory andLyapunov stability
theory. MATLAB plotsusing classical fourth-order Runge-Kutta method have been depictedfor the new
adaptive hybrid synchronization results for the hyperchactic Zheng and hyperchaotic Yu systems.
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1. INTRODUCTION

Since thediscovery by the German scientist,0.E.Réssler ([1], 1979), hyperchaotic systems have
found many applicationsin areas like neural networks [2],oscillators [3], communication [4-5],
encryption [6], synchronization [7], etc. In chaos theory, hyperchaotic system is usually defined
as a chaotic system having two or more positive Lyapunov exponents. Hyperchaotic systems have
many attractive features like high efficiency, high capacity, high security, etc.

For the synchronization of chaotic systems, there are many methods available in the chaos
literature like OGY method [8], PC method [9],backstepping method [10-12], diding control
method [13-15], active control method [16-17], adaptive control method [18-19], sampled-data
feedback control [20], time-delay feedback method [21], etc.

In the hybrid synchronization of a pair of chaotic systems caled the master and slave systems,
one part of the systems, viz. the odd states, are completely synchronized (CS), while the other
part of the systems, viz. the even states, are anti-synchronized so that CS and AS co-exist in the
process of synchronization of the two systems.

This paper focuses upon adaptive controller design for the hybrid synchronization of hyperchagotic
Zheng systems ([22], 2010) and hyperchaotic Y usystems ([23], 2012) with unknown parameters.
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The main results derived in this paper have been proved using adaptive control theory [24]
andLyapunov stability theory [25]..

2. ADAPTIVE CONTROL METHODOLOGYFOR HYBRID SYNCHRONIZATION

The master systemis described by the chaotic dynamics

x= Ax+ f (%) o)

where Aisthe nxn matrix of the system parametersand f : R" — R"isthe nonlinear part.
The dave systemis described by the chaotic dynamics

y=By+g(y)+u 2
where B isthe nxnmatrix of the system parametersandg: R" — R"isthe nonlinear part
For the pair of chaotic systems (1) and (2), the hybrid synchronization erroris defined as

ay, —x, if iisodd
€=0 e (3
oy, +%, if iiseven

The error dynamicsis obtained as
E\Z(ijj—qjxj)+gi(y)—fi(x)+ui if i is odd
¢=0 (4)
EZ(W"+ajxj)+g‘(y)+fi(x)+ui if i iseven
&

The design goal isto find afeedback controller uso that
lim|e(t)] = Ofor all e(0)OR" (5)

Using the matrix method, we consider a candidate Lyapunov function

V(e) =e'Pe, (6)
where P is a positive definite matrix. It isnoted that V : R" — R isa positive definite function.

If we find afeedback controller uso that
V(e)=-€'Qe, (7)
whereQis a positive definite matrix, then V : R" — R isanegative definite function.

Thus, by Lyapunov stability theory [25], the error dynamics (4) is globally exponentialy stable.
Hence, the states of the chaotic systems (1) and (2) will be globally and exponentialy

hybrid synchronized for al initial conditions x(0), y(0) 0 R".When the system parameters are
unknown, we use estimates for them and find a parameter update law using Lyapunov approach.
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3.4-D HYPERCHAOTIC SYSTEMS
The 4-D hyperchaotic Zhengsystem ([22], 2010) has the dynamics

X =a(X, = x)+X,
X, =bX +Cx, + XX + X,
X ==X =%
X, =—dx,
wherea, b, c,r,d are constant, positive parameters of the system.

©)

The 4-D Zheng system (8) exhibits a hyperchaotic attractor for the parametric values

a=20, b=14, ¢c=106, d=4, r=28 9
The Lyapunov exponents of the system (8) for the parametric valuesin (9) are

L, =18892, L,=02268 L,=0, L,=-144130 (10)

Since there are two positive Lyapunov exponents in (10), the Zheng system (8) is hyperchaotic
for the parametric values (9).

The strange attractor of the hyperchaotic Zheng system isdisplayed in Figure 1.
The 4-D hyperchaotic Y u system ([23], 2012) has the dynamics

% =a(x—x)

X, = X = XX X, X,

% = €Y =%
X, = €%

(11)

wherea, S,7,0, € are constant, positive parameters of the system.

The 4-D Yu system (11) exhibits a hyperchaotic attractor for the parametric values

a=10, =40, y=1, 6=3 &£=8 (12)
The Lyapunov exponents of the system (11) for the parametric valuesin (12) are

L, =16877, L,=01214, L,=0, L,=-13.7271 (13)

Since there are two positive Lyapunov exponents in (13), theY usystem (11) is hyperchaotic for
the parametric vaues (12).

The strange attractor of the hyperchaotic Yu system is displayed in Figure 2.
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Figure 1. The State Portrait of the HyperchaoticZhengSystem

Figure 2. The State Portrait of the Hyperchaotic Y u System
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4. ADAPTIVECONTROL DESIGN FOR THE HYBRIDSYNCHRONIZATION OF
HYPERCHAOTIC ZHENG SYSTEMS

In this section, we design an adaptivesynchronizer for the hybrid synchronization of two identica
hyperchaotic Zheng systems (2010) with unknown parameters.

The hyperchaotic Zheng system is taken as the master system, whose dynamics isgiven by

X =a(X, = %) +X,
X, =bX +Cx, + X% + X,
X=X 1%
X, =—dx,
wherea, b, c,d, r are unknown parameters of the system and x[J R*isthe state of the system.

(14)

The hyperchaotic Zheng system is also taken as the dave system, whose dynamicsis given by

yl :a(yz_y1)+y4+u1
Y, =by, +cy, +y v, +y, +u,

Y; = _y12 —ry; +U,
y, =—dy, +u,

(15

where y[OR* is the state and u,,U,,U.,U, are the adaptivecontrollers to be designed using
y 112173174

estimates a(t), B(t), (1), d (t), f(t) of the unknown parameters a,b,c,d, r , respectively.
For the hybrid synchronization, the error eis defined as

E=NTX &Y tX, =Y, 7X, =Y, X, (16)
A simple calculation givesthe error dynamics

g=a(y,=%-g)+ty,— X +u
& =b(y, +X)+ce +6,+Y,Y; + XX +U,

) , o a7)
& =TG-y, +X +U;
¢, =—-de, +u,
Next, we choose a nonlinear controller for achieving hybrid synchronization as
U ==a()(Y, =% ~8) ~ Y, + X, ~ke
U, = =b(t)(y, + %) —C(t)e, —€, — V1 Y; = XX —K;& (18)

u, =f(t)e + Y12 - Xl2 —kq€,
u, =d(t)e, -k,g,
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In Eq. (18), k., (i =1,2,3,4) are positive gains and é(t),f)(t),é(t), &(t), f(t) are etimates of the
unknown parameters a,b,c,d,r , respectively.

By the substitution of (18) into (17), the error dynamics is determined as

& =(a-aW)(y,~x, &) ke

&, = (b-bO)(y, +x) +(c-E(t)e, —ke,
e, =—(r -f(t)e, - ke,

&, =—(d-d()e,-ke,

(19)

Next, we define the parameter estimation errors as

e, (t) =a-4a(t), g (t) =b-b(t), & (t) =c-¢(t), ) =d-d(t), e (®)=r-f(t) (20
Differentiating (20) with respect to t, we get

&) =-4(), (1) =-b), & ) =-&1), &1) =-d©, e®=-F1)  (20)
In view of (20), we can ssimplify the error dynamics (19) as

& =e(y,-Xx-e)-ke
& =6(y,+x)+ee —ke

. (22)
& =-66-kg
€ =-66- k4e4
We take the quadratic Lyapunov function
V:%(ef+e§+ej+ej+e§+e§+ef+e§+ef), (23)
Which is a positive definite function on R®.
When we differentiate (22) along the trgjectories of (19) and (21), we get
P L2 L2 L2 L a2 Yy A\ _A _¢C
V = kel -k —keel ke +e, Ry, - X, —e) -afre, (v, + %) b
. (24)
2 A D_ _ AD 2 A
+e [ —Chre, T dE+er He -1H
Inview of Eq. (24), wetake the parameter update law as
a=g(y,-%-8)*ke, b=e(h+x)tke, C=&+ke 5

d=-ee +ke, F=—ef+kg

Theorem 4.1 The adaptive control law (18) dong with the parameter update law (25), where
k,(i=12,...,9) are positive gains, achieves global and exponentia hybrid synchronization of
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the identical hyperchaotic Zheng systems (14) and (15), where é(t),B(t),é(t),&(t),r”(t) are
estimates of the unknown parameters a,b,c,d,r, respectively. In addition, the parameter
estimation errors €,,6,,€,,€,, € converge to zero exponentially for al initial conditions.

Proof .We prove the above result using Lyapunov stability theory [25].
Substituting the parameter update law (25) into (24), we get

V = -k k& —kyel —k,ef —koel — ko) — kel — kol —koef (26)
which is anegative definite function on R°.

This shows that the hybrid synchronization errors g (t),e,(t),&(t),€,(t) and the parameter

estimation errors e,(t), g (t),e.(t),e,(t),e (t) are globaly exponentialy stable for al initial
conditions.This completes the proof. |

Next, we use MATLAB to demonstrate our hybrid synchronization results.
The classical fourthorder Runge-K utta method with time-step h =107 has been applied to solve
the hyperchaotic Zheng systems (14) and (15) with the adaptive nonlinear controller(18) and the
parameter update law (25). The feedback gainsarechosenas k =5, (1 =1,2,...,9).
The parameters of the hyperchaotic Zheng systems are taken asin the hyperchaotic case, i.e.
a=20, b=14, c=106, d=4, r=28
For smulations, theinitial conditions of the hyperchaotic Zheng system (14) are chosen as
% (0) =24, x,(0)=-15, x,(0)=-6, x,(0)=18
Also, theinitia conditions of the hyperchaotic Zheng system (15) are chosen as
¥,(0) =12, y,(0) =-9, y;(0) =26, v,(0) =-6
Also, theinitial conditions of the parameter estimates are chosen as
4(0)=9, b(0)=-7, &0)=8, d(0)=2, F(0)=-5
Figure 3 depicts the hybrid synchronization of theidentica hyperchaoticZheng systems.

Figure 4 depicts the time-history of the hybrid synchronization errors €, €,,€,,€,.

Figure 5 depicts the time-history of the parameter estimation errors €,,6,,€.,€,,6, .
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Figure 3.Hybrid Synchronization of Identical Hyperchaotic Zheng Systems
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Figure 4. Time-History of the Hybrid Synchronization Errors€,, €,,€;, €,
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Figure 5. Time-History of the Parameter Estimation Errors€, , §,,€.,€;,€

5. ADAPTIVE CONTROLLER DESIGN FOR THE HYBRID SYNCHRONIZATION
DESIGN OF HYPERCHAOTIC YU SYSTEMS

In this section, we design an adaptive controller for the hybrid synchronization of two identical
hyperchaotic Y usystems (2012) with unknown parameters.

The hyperchaotic Y usystem is taken as the master system, whose dynamicsis given by

X =a(X =)
X, = X = XXty X + X,
X = €% — 0%

Xy =—€X

(27)

wherea, f,v,0, ¢ are unknown parameters of the system and x [ R*isthe state of the system.
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The hyperchaotic Y u system is aso taken as the dave system, whose dynamics is given by

Y1 =a(y2 _y1)+u1
Yo =B = ViYs+trY, t Y, tU,
Yo =€ =5y, +u,

Y, =€y, Ty,

(28)

Where yOR* is the state and u,,U,,U,,U, are the adaptivecontrollers to be designed using
estimates G (t), A(t), 7(t), 5(t), &(t) of the unknown parametersa, 8, 7,5, &, respectively.

For the hybrid synchronization, the error eisdefined as

E=N"X
€&=Y,tX% (29)
&=Y;:7X%
& =Y, + Xy
A simple calculation gives the error dynamics
g=a(y,~%-e)+y
& =LYt X) T 78 +8 ~ VY ~ XX+ U,
(30)
% — _563 + ey1Y2 _exlx2 + u3
&, =—¢(y, +x)+u,
Next, we choose a nonlinear controller for achieving hybrid synchronization as
U =-a(t)(y, - % &) ke
U, = =By, +%) = 7(1)e, — € + Y,y + XX, ~ K&, 31)
u, = S(t)% —e + e — ke,
u, =)y, +x) - ke,
InEq. (31), k, (i =1,2,3,4) are positive gains.
By the substitution of (31) into (30), the error dynamicsis simplified as
& =(a—a)(y. - y) ke
& =(B-FO)Y+%)+(r =7 (M)e, ~ke, -

&, =—(5-5(t)e, —kse,
e = _(5 - é(t))(yl + X1) - k4e4
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Next, we define the parameter estimation errors as
e (t)=a-aft)
&,(t)=B-B(t)
e(t)=y-r()
e, (t) =6 - 5(t)
e (t)=¢-&(t)

Differentiating (33) with respect to t, we get

6. (0 =-a(t), &t) =-A), & 1) =-7(1), &1 =-5(), &) =-5(t)
In view of (33), we can simplify the error dynamics (32) as

=6y~ %~-8)-ke

& =g (Y, +x)tee —ke

&=- 5%_k3%
6= _es(yl +X1) _k4e4

We take the quadratic Lyapunov function
1 2 2 2 2 2 2 2 2 2
v =§(el +e+el+el+el+e) +el +el +e€),
which is a positive definite function on R°.

When we differentiate (35) along the trgjectories of (32) and (33), we get
V=-ke -k ke —k,& +e, [R (Y, % —e) - afre, (v %) - fE
+e;/ %2 _;H"'ea‘ E_ej _5‘%"% H_e4(y1+)(]_)_25

Inview of Eqg. (37), we take the parameter update law as

A

a=e(y,~%-8)*ke, B=e(y+x)+tke, 7=€+ke,
5‘2—6‘?+k8e§, 5:—e4(y1+xl)+k9e‘g

(33)

(34)

(35

(36)

(37)

(38)

Theorem 5.1 The adaptive control law (31) aong with the parameter update law (38), where
k,(i=12,...,9) are positive gains, achieves globa and exponential hybrid synchronization of
the identical hyperchaotic Yu systems (27) and (28), where G(t), (1), 7(t), 5(t), &(t) are
estimates of the unknown parameters «, 5,7,0, €, respectively. Moreover, al the parameter

estimation errors converge to zero exponentially for al initial conditions.
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Proof We prove the above result using Lyapunov stability theory [25].

Substituting the parameter update law (38) into (37), we get

V = kel —k& —k& —ki&f —kel —ke€; —ki€ kel —koe (39)
which is a negative definite function on R°.

This shows that the hybrid synchronization errors € (t),e,(t),&(t),e,(t) and the parameter
estimation errors €, (t),€,(t), e, (t),e;(t),e,(t) are globaly exponentidly stable for al initial
conditions.This completes the proof. |

Next, we demonstrate our hybrid synchronization resultswith MATLAB simulations.

The classical fourth order Runge-K utta method with time-step h =107 has been applied to solve
the hyperchaotic Yu systems (27) and (28) with the adaptive nonlinear controller(31) and the
parameter update law (38). The feedback gains are taken as

k =5, (1=12,...,9).

The parameters of the hyperchaotic Y u systems are taken as in the hyperchaotic case, i.e.
a=10, =40, y=1, 6=3 &£=8

For simulations, the initial conditions of the hyperchaoticY u system (27) are chosen as
%(0) =4, %,(0)=-2, x,(0)=8, x,(0)=-10

Also, theinitia conditions of the hyperchaotic Y usystem (28) are chosen as
¥,(0) =16, ¥,(0) =8, y,(0)=12, v,(0)=-6

Also, theinitial conditions of the parameter estimates are chosen as
¢(0)=17, B(0)=-7, 7(0)=12, 5(0)=-5 #(0)=6

Figure 6depicts the hybrid synchronization of the identical hyperchaoticY u systems.

Figure 7depicts the time-history of the hybrid synchronization errors €, €,,€;,€,.

Figure 8depicts the time-history of the parameter estimation errors €, €;,€,6;,€,.
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Figure 6.Hybrid Synchronization of Identical Hyperchaotic Y u Systems
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Figure 7. Time-History of the Hybrid Synchronization Errors€,€,,€;, €,
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Figure 8. Time-History of the Parameter Estimation Errors €, eﬂ , ey €5, €.

6. ADAPTIVE CONTROLLER DESIGN FOR THE HYBRID SYNCHRONIZATION

DESIGN OF HYPERCHAOTIC ZHENG AND HYPERCHAOTIC YU SYSTEMS

In this section, we design an adaptive controller for the hybrid synchronization
ofhyperchaoticZheng system (2010) and hyperchaotic Yusystem (2012) with unknown

parameters.

The hyperchaotic Zhengsystem is taken as the master system, whose dynamicsis given by

% =als = x) X,

Xy =0 + 0% + X% + X

X == g 4 0
X, = —dXx,

wherea, b, c,d, r are unknown parameters of the system.

The hyperchaotic Yu system is also taken as the slave system, whose dynamicsis given by
Vi = a(yz - yl) U
Yo = BYi=WYstyY, Y, tU,
Yo =€ =5y, +u,
Y, =€y, Ty,
wherea, B,7,0, ¢ are unknown parametersand u,, U,, U,, U, are the adaptivecontrollers.

(41)
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For the hybrid synchronization, the error e is defined as

E=YI X &Y, T X, §=Y;7X, € =Y, TX,
A simple calculation gives the error dynamics

& =a(y,~y)—alx, —x) =X+

& =LY t7Y, +€ b + 06—y Y XX+,

& =0y, +rX +e +x +u,
& =-¢y,—dx, +u,

Next, we choose a honlinear controller for achieving hybrid synchronization as
U = _&(t)(yz - yl) + é(t)(xz - Xl) X, - kle.l.
U, ==A)Y, = 7)Y, =€ =bt)% —C(t)X, + ¥1Y; = XX, ~ K&,
Uy =5(t)ys —F(t)% —€"™ - X —kee,
u, =£(t)y, +d(t)x, - ke,
wherek;, (i =1,2,3,4)arepositive gains.
By the substitution of (44) into (43), the error dynamicsis obtained as
& =(a—a)(y, —y) - (@-a)(x, - x) -keg
& = (8- W)Y, +(r 7)Yy, +(b-bt)x +(c=-C)x, —ke,
& ==(0-0M)y, +(r —F(1)x; ~kse,
& =—(¢- (1)) y, —(d =d(1))x, —k,e,

Next, we define the parameter estimation errors as

e,(t) =a-a(t), g (t)=b-b(t), e(t)=c-E&), &t)=d-d()
e () =r—7(t), &) =a-a(), e t)=4-A). &) =r-7(t)
& (1) =5-5(1), e,(t) =&~ &(t)

Differentiating (46) with respect to t, we get

e,(t) =-a(), &)= —B(t)1 e () =—C(t), &(t) = —a(t), & (t) =-f(t)
e,(t)=-a(t), &) =-A(t), &) =-7(1), &) ==-5(t), &(t)=-2(t)

(42)

(43)

(44)

(45)

(46)

(47)
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In view of (46), we can ssimplify the error dynamics (45) as

& :ea(yZ _yl)_ea(x2 _Xl)_kiel
& =gy tey, tex +ex —ky&,

. (48)
& =6 Y, +6X ~ ke
& =€y, —&X ~kKe
We take the quadratic Lyapunov function
Vv :%(ef +e+e€+ef+ef+e+ef+ef+e8 + e +e2+ef+e§+ef) (49)

When we differentiate (48) along the trajectories of (45) and (46), we get
V =k ko€ ke ~kief +e, a0 ~x) a6 B ~bEk e o, ~¢F
+e, Tex,~dre B e [y, ~v)-alre, By - 45 (50)
+e [&y, - 7Fre, 5‘%3’3 —5E+ e Fevi-2[

Inview of Eq. (50), we take the parameter update law as

d=-g(6-x)+ke, b=ex+ke, C=eX, +ke,
d=-ex+ke, F=ex ke, a=e(mWrke, o
B:e?yl"'kneﬁ’ ;=GQY2+k129y! 3=—e3y3+k1395

&= eyt k14ea
Theorem 6.1 The adaptive control law (44) aong with the parameter update law (51), where
k,(i=12,...,14) are positive gains, achieves globa and exponential hybrid synchronization of
the hyperchaotic Zheng system (40) hyperchaotic Yu system (41), where a(t), B(t), c(t), d (1),
F(t), at), A(t), 7(t), 5(t), &(t) are estimates of the unknown parameters a,b,c,d,r,

a,B,y,0,¢&, respectively. Moreover, all the parameter estimation errors converge to zero
exponentialy for al initial conditions.

Proof.We prove the above result using Lyapunov stahility theory [25].Substituting the parameter
update law (51) into (50), we get
V =k k& — k& — k& —keel —ko&) — k€l — ksl —koef
- k10e§ - kueé - klzef - k13e§ - k14e52

which is a negative definite function on R*.

(52)
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This shows that the hybrid synchronization errors € (t),e,(t),&(t),e,(t) and the parameter
esimation errors g, (t),&,(t),e.(t),&, (t),& (1), €,(t).e,(t),e (1), (t),e.(t) ae globaly
exponentialy stable for al initial conditions. This completesthe proof. ®

For simulations, theclassical fourth order Runge-Kutta method with time-step h =107 has been
applied to solve the hyperchaotic Li systems (27) and (28) with the adaptive nonlinear
controller(31) and the parameter update law (38). The feedback gains are taken as

k =5, (i =1,2,...,14). The parameters of the hyperchaotic Zheng and hyperchaotic Yu systems
aretakenasa=20,b=14,¢c=106, d=4,r=28 =10, =40,y =1, 6 =3and £ =8.

For simulations, the initial conditions of the hyperchaotic Zheng system (40) are chosen as
x(0)=4, x%(0=9, x(0)=1 x(0)=4

Also, theinitial conditions of the hyperchaotic Y u system (41) are chosen as
%1(00=8, ¥,(0)=3, y5(0) =1, y,(0)=2

Also, theinitial conditions of the parameter estimates are chosen as

4(0) = 2,b(0) = 6,6(0) =3,d(0) = -3,(0) = -1, &(0) = 7, B(0) = 4,7(0) =9,5(0) =5,£(0) = 4

Figure 9depicts the hybrid synchronization of hyperchaoticZheng and hyperchaotic Yu systems.
Figure 10Odepicts the time-history of the hybrid synchronization errors €,e,,€;,€,. Figure

11depicts the time-history of the parameter estimation errorse,, €,,€,,€,, € . Figure 12depicts the
time-history of the parameter estimation errors €,,e;,€,,€;,€,.
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Figure 9.Hybrid Synchronization of Hyperchaotic Xu and Lu Systems
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7. CONCLUSIONS

This paper derived new results for the active synchronizer design for achieving hybrid
synchronization of hyperchaoticZhengsystems (2010) and hyperchaotic Yu systems (2012).
Using Lyapunov control theory,adaptive control laws were derived for globally hybrid
synchronizing the states of identica hyperchaotic Zheng systems, identical hyperchactic Yu
systems and non-identical hyperchaotic Zheng and Yu systems. Numerical simulations using
MATLABwere shown to vaidate and illustrate the hybrid synchronization results for
hyperchaotic Zheng and Y u systems.
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