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ABSTRACT 

This paper investigates the anti-synchronization of identical hyperchaotic Newton-Leipnik systems 

(Ghosh and Bhattacharya, 2010) via sliding mode control. The stability results derived in this paper for 

the anti-synchronization of identical hyperchaotic Xu systems are established using Lyapunov stability 

theory. Numerical simulations are shown to illustrate and validate the anti-synchronization schemes 

derived in this paper for the identical hyperchaotic Newton-Leipnik systems. 
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1. INTRODUCTION 

Hyperchaotic system is usually defined as a chaotic system with more than one positive 

Lyapunov exponent. The first hyperchaotic system was discovered by O.E. Rössler ([1], 1979). 

Since hyperchaotic system has the characteristics of high capacity, high security and high 

efficiency, it has the potential of broad applications in nonlinear circuits, secure 

communications, lasers, neural networks, biological systems and so on. Thus, the studies on 

hyperchaotic systems, viz. control, synchronization and circuit implementation are very 

challenging problems in the chaos literature. 

In the problem of chaos synchronization, the master-slave formalism is commonly adopted. If a  

certain chaotic system is called the master or drive system and another system is called the slave 

or response system, then the goal of the anti-synchronization is to apply the output of the master 

system so as to control the slave system so that the states of the slave system have the same 

amplitude but opposite signs as the states of the master system asymptotically. 

Since the seminal paper published by Pecora and Carroll ([2], 1990), chaos synchronization 

problem has been studied rigorously in the chaos literature [2-17]. Chaos theory has been 

applied to a variety of applied fields such as physical systems [3], chemical systems [4], 

ecological systems [5], secure communications [6-8], etc. 

In the last two decades, various synchronization schemes have been successfully deployed for 

global synchronization such as PC method [2], OGY method [9], active control method [10-14], 

adaptive control method [15-20], time-delay feedback method [21], backstepping design 

method [22], sampled-data feedback method [23], etc. 
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In this paper, we derive new results based on the sliding mode control [24-28] for the anti-

synchronization of identical hyperchaotic Newton-Leipnik systems ([29], Ghosh and 

Bhattacharya, 2010).  

This paper has been organized as follows. In Section 2, we present the problem statement of 

anti-synchronization and detail our methodology using sliding mode control (SMC). In Section 

3, we discuss the anti- synchronization of identical hyperchaotic Newton-Leipnik systems. In 

Section 4, we conclude with a summary of the main results derived in this paper using SMC. 

2. PROBLEM STATEMENT AND OUR SLIDING MODE CONTROL DESIGN 

Consider the chaotic system described by 

( )x Ax f x= +&             (1) 

where 
n

x ∈R is the state of the system, A is the n n×  matrix of the system parameters and 

: n n
f →R R is the nonlinear part of the system.  

We consider the system (1) as the master or drive system. 

As the slave or response system, we consider the following chaotic system described by the 

dynamics 

 ( )y Ay f y u= + +&               (2) 

where 
n

y ∈R is the state of the system and 
m

u ∈R is the controller to be designed.  

If we define the anti-synchronization error as  

 ,e y x= +           (3) 

then the error dynamics is obtained as   

   ( , ) ,e Ae x y uη= + +&                 (4) 

where  

  ( , ) ( ) ( )x y f y f xη = +         (5) 

The objective of the anti-synchronization problem is to find a controller u such that 

lim ( ) 0
t

e t
→∞

=    for all (0) .n
e ∈R  

To solve this problem, we first define the control u as 

  ( , )u x y Bvη= − +            (6) 

where B is a constant gain vector selected such that  ( , )A B  is controllable.  
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Substituting (6) into (4), the error dynamics simplifies to 

  e Ae Bv= +&                              (7) 

which is a linear time-invariant control system with single input .v  

Thus, the original anti-synchronization problem can be replaced by an equivalent problem of 

stabilizing the zero solution 0e = of the system (7) by a suitable choice of the sliding mode 

control. In the sliding mode control, we define the variable 

   1 1 2 2( ) n ns e Ce c e c e c e= = + + +L             (8) 

where  

[ ]1 2 nC c c c= L  

is a constant vector to be determined. 

In the sliding mode control, we constrain the motion of the system (7) to the sliding manifold 

defined by 

  { }| ( ) 0n
S x s e= ∈ =R  

which is required to be invariant under the flow of the error dynamics (7). 

When in sliding manifold ,S the system (7) satisfies the following conditions: 

    ( ) 0s e =                  (9) 

which is the defining equation for the manifold S and 

  ( ) 0s e =&                      (10) 

which is the necessary condition for the state trajectory ( )e t  of (7) to stay on the sliding 

manifold .S  

Using (7) and (8), the equation (10) can be rewritten as 

        [ ]( ) 0s e C Ae Bv= + =&                 (11) 

Solving (11) for ,v we obtain the equivalent control law  

  
1

eq ( ) ( )  ( )v t CB CA e t−= −              (12) 

where C is chosen such that  

0.CB ≠  
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Substituting (12) into the error dynamics (7), we obtain the closed-loop dynamics as 

  
1( )e I B CB C Ae

− = − &              (13) 

The row vector C is selected such that the system matrix of the controlled dynamics 
1( )I B CB C A

− −  is Hurwitz, i.e. it has all eigenvalues with negative real parts. Then the 

controlled system (13) is globally asymptotically stable.  

To design the sliding mode controller for (7), we apply the constant plus proportional rate 

reaching law 

  sgn( )  s q s k s= − −&                     (14) 

where sgn( )⋅ denotes the sign function and the gains 0,q >  0k > are determined such that the 

sliding condition is satisfied and sliding motion will occur.  

From equations (11) and (14), we can obtain the control ( )v t as 

  [ ]1( ) ( ) ( ) sgn( )v t CB C kI A e q s−= − + +          (15) 

which yields 

  
[ ]

[ ]

1

1

( ) ( ) , if ( ) 0
( )

( ) ( ) , if ( ) 0

CB C kI A e q s e
v t

CB C kI A e q s e

−

−

− + + >
=

− + − <





         (16) 

Theorem 2.1. The master system (1) and the slave system (2) are globally and asymptotically 

anti-synchronized for all initial conditions (0), (0) n
x y R∈ by the feedback control law 

        ( ) ( , ) ( )u t x y Bv tη= − +                                                                                               (17) 

where ( )v t is defined by (15) and B is a column vector such that ( , )A B is controllable. Also, the 

sliding mode gains ,k q are positive. 

Proof.  First, we note that substituting (17) and (15) into the error dynamics (4), we obtain the 

closed-loop error dynamics as 

       [ ]1( ) ( ) sgn( )e Ae B CB C kI A e q s−= − + +&                                                                  (18) 

To prove that the error dynamics (18) is globally asymptotically stable, we consider the 

candidate Lyapunov function defined by the equation 

  
21

( ) ( )
2

V e s e=               (19) 

which is a positive definite function on .n
R  
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Differentiating V along the trajectories of (18) or the equivalent dynamics (14), we get 

  
2( ) ( ) ( ) sgn( )V e s e s e ks q s s= = − −& &            (20) 

which is a negative definite function on .n
R   

Thus, by Lyapunov stability theory [30], we conclude the error dynamics (18) is globally 

asymptotically stable for all initial conditions (0) .n
e ∈R  

Hence, it is immediate that the master system (1) and the slave system (2) are globally and 

asymptotically anti-synchronized for all initial conditions (0), (0) .n
x y ∈R  

This completes the proof. � 

3. ANTI-SYNCHRONIZATION OF IDENTICAL HYPERCHAOTIC NEWTON-

LEIPNIK SYSTEMS VIA SLIDING MODE CONTROL 

3.1 Theoretical Results 

Here, the master system is described by the hyperchaotic Newton-Leipnik dynamics (2010) 

1 1 2 2 3 4

2 1 2 1 3

3 3 1 2

4 1 3 4

10

0.4 5

5

x ax x x x x

x x x x x

x bx x x

x cx x dx

= − + + +

= − − +

= −

= − +

&

&

&

&

        (21) 

where 1 2 3 4, , ,x x x x  are state variables and  , , ,a b c d are positive, constant parameters of the 

system. 

The 4D system (21) is hyperchaotic when the parameters are chosen as 

  0.4,  0.175,  0.8a b c= = =   and  0.01.d =   

Figure 1 illustrates the phase portrait of the hyperchaotic Newton-Leipnik system. 

The slave system is described by the controlled hyperchaotic Newton-Leipnik dynamics 

 

1 1 2 2 3 4 1

2 1 2 1 3 2

3 3 1 2 3

4 1 3 4 4

10

0.4 5

5

y ay y y y y u

y y y y y u

y by y y u

y cy y dy u

= − + + + +

= − − + +

= − +

= − + +

&

&

&

&

        (22) 

where 1 2 3 4, , ,y y y y are state variables and 1 2 3 4, , ,u u u u are the controllers to be designed. 
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Figure 1.  Phase Portrait of the Hyperchaotic Newton-Leipnik System 

The chaos anti-synchronization error is defined by 

        ( ),  1, 2,3,4i i ie y x i= + =           (23) 

The error dynamics is easily obtained as 

           

1 1 2 4 2 3 2 3 1

2 1 2 1 3 1 3 2

3 3 1 2 1 2 3

4 4 1 3 1 3 4

10( )

0.4 5( )

5( )

( )

e ae e e y y x x u

e e e y y x x u

e be y y x x u

e de c y y x x u

= − + + + + +

= − − + + +

= − + +

= − + +

&

&

&

&

       (24) 

We write the error dynamics (24) in the matrix notation as 

  ( , )e Ae x y uη= + +&             (25) 

where 

          

1 0 1

1 0.4 0 0
,

0 0 0

0 0 0

a

A
b

d

− 
 

− − =
 
 
 

2 3 2 3

1 3 1 3

1 2 1 2

1 3 1 3

10( )

5( )
   ( , )

5( )

( )

y y x x

y y x x
x y

y y x x

c y y x x

η

+ 
 

+ =
 − +
 
− + 

    (26) 
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and    

1

2

3

4

u

u
u

u

u

 
 
 =
 
 
 

.              (27) 

First, we set u as 

  ( , )u x y Bvη= − +                (28) 

where B is taken such that ( , )A B is controllable. 

We choose B as 

  

1

1

1

1

B

 
 
 =
 
 
 

           (29) 

In the hyperchaotic case, the parameter values are taken as 

  0.4,  0.175,  0.8a b c= = =   and  0.01.d =    

The sliding mode variable is selected as 

      [ ] 1 2 32 2 3 0 2 2 3s Ce e e e e= = = + +                (30) 

which makes the sliding mode state equation asymptotically stable.  

We choose the sliding mode gains as  

  6k =   and  0.2.q =  

We note that a large value of k can cause chattering and an appropriate value of q is chosen to 

speed up the time taken to reach the sliding manifold as well as to reduce the system chattering. 

From Eq. (15), we can obtain ( )v t as 

  1 2 3 4( ) 1.3143 1.8857 2.6464 0.2857 0.0286sgn( )v t e e e e s= − − − − −   (31) 

Thus, the required sliding mode controller is obtained as 

  ( , )u x y Bvη= − +           (32) 

where ( , ),x y Bη and ( )v t are given by the equations (26), (28) and (31). 
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By Theorem 2.1, we obtain the following result. 

Theorem 3.1. The identical hyperchaotic Newton-Leipnik systems (21) and (22) are globally 

and asymptotically anti-synchronized for all initial conditions with the sliding mode controller 

u defined by (32). � 

3.2 Numerical Results 

For the numerical simulations, the fourth-order Runge-Kutta method with time-step 
8

10h
−

= is 

adopted to solve the hyperchaotic Newton-Leipnik systems (21) and (22) with the sliding 

controller u given by (32) using MATLAB. 

In the hyperchaotic case, the parameter values are given by  0.4,  0.175,  0.8a b c= = =   and  

0.01.d =   The sliding mode gains are chosen as  6k =  and  0.2.q =  

The initial values of the master system (21) are taken as 

         1 2 3 4(0) 9,  (0) 6,   (0) 7,    (0) 12x x x x= = = − = −  

The initial values of the slave system (22) are taken as 

             
1 2 3 4(0) 5,  (0) 18,  (0) 20,  (0) 4y yy y= = − = =  

Figure 2 depicts the time-history of the anti-synchronization errors 
1 2 3 4, , , .e e e e   

  

 

Figure 2.  Time-History of the Anti-Synchronization Error 
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4. CONCLUSIONS 

In this paper, we have deployed sliding mode control (SMC) to achieve anti-synchronization for 

the identical hyperchaotic Newton-Leipnik systems (2010). Our anti-synchronization results for 

the identical hyperchaotic Newton-Leipnik systems have been proved using Lyapunov stability 

theory. Numerical simulations have been provided to show the effectiveness of the SMC-based 

anti-synchronization results derived for the hyperchaotic Newton-Leipnik systems.  
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