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ABSTRACT 

This paper deals with a new research problem in the chaos literature, viz. hybrid synchronization of a 

pair of chaotic systems called the master and slave systems. In the hybrid synchronization design of 

master and slave systems, one part of the systems, viz. their odd states, are completely synchronized (CS), 

while the other part, viz. their even states, are completely anti-synchronized (AS) so that CS and AS co-

exist in the process of synchronization. This research work deals with the hybrid synchronization of 

hyperchaotic Zheng systems (2010) and hyperchaotic Yu systems (2012).  The main results of this hybrid 

synchronization research work have been proved using Lyapunov stability theory. Numerical examples of 

the hybrid synchronization results are shown along with MATLAB simulations for the hyperchaotic 

Zheng and hyperchaotic Yu systems. 
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1. INTRODUCTION 

Hyperchaotic systems are typically defined as chaotic systems possessing two or more positive 

Lyapunov exponents. These systems have several miscellaneous applications in Engineering 

and Science.  The first known hyperchaotic system was discovered by O.E. Rössler ([1], 1979).  

Hyperchaotic systems have many useful features like high security, high capacity and high 

efficiency. Hence, the hyperchaotic systems have important applications in areas like neural 

networks [2], oscillators [3], communication [4-5], encryption [6], synchronization [7], etc. 

For the synchronization of chaotic systems, there are many methods available in the chaos 

literature like OGY method [8], PC method [9], backstepping method [10-12], sliding control 

method [13-15], active control method [16-18], adaptive control method [19-20], sampled-data 

feedback control method [21], time-delay feedback method [22], etc. 

In the hybrid synchronization of a pair of chaotic systems called the master and slave systems, 

one part of the systems, viz. the odd states, are completely synchronized (CS), while the other 

part of the systems, viz. the even states, are anti-synchronized so that CS and AS co-exist in the 

process of synchronization of the two systems. 

This paper focuses upon active controller design for the hybrid synchronization of hyperchaotic 

Zheng systems ([23], 2010) and hyperchaotic Yu systems ([24], 2012). The main results derived 

in this paper have been proved using stability theorems of Lyapunov stability theory [25]. 
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2. HYBRID SYNCHRONIZATION PROBLEM  

The master system is described by the chaotic dynamics 

( )x Ax f x= +&          (1) 

where A is the n n×  matrix of the system parameters and : n n
f →R R is the nonlinear part. 

The slave system is described by the chaotic dynamics 

  ( )y By g y u= + +&           (2) 

where B is the n n× matrix of the system parameters, : n n
g →R R is the nonlinear part and 

nu ∈R is the active controller to be designed. 

For the pair of chaotic systems (1) and (2), the hybrid synchronization error is defined as 

  
,  if   is odd 

,  if   is even 

i i

i
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−
= 

+
        (3) 

The error dynamics is obtained as 
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The design goal is to find a feedback controller u so that 

   lim ( ) 0
t

e t
→∞

=  for all (0)e ∈R n
                          (5) 

Using the matrix method, we consider a candidate Lyapunov function 

            ( ) ,T
V e e Pe=                                                      (6) 

where P is a positive definite matrix. It is noted that : nV →R R is a positive definite function.  

If we find a feedback controller u so that 

           ( ) ,T
V e e Qe= −&                                                    (7) 

where Q is a positive definite matrix, then : nV →& R R  is a negative definite function.  

Thus, by Lyapunov stability theory [25], the error dynamics (4) is globally exponentially stable. 

Hence, the states of the chaotic systems (1) and (2) will be globally and exponentially  

hybrid synchronized for all initial conditions (0), (0) .n
x y ∈R  
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3. HYPERCHAOTIC SYSTEMS 

The hyperchaotic Zheng system ([23], 2010) has the 4-D dynamics 

1 2 1 4

2 1 2 4 1 3

2

3 1 3

4 2

( )x a x x x

x bx cx x x x

x x rx

x dx

= − +

= + + +

= − −

= −

&

&

&

&

          (8) 

where , , , ,a b c r d  are constant, positive parameters of the system. 

The Zheng system (8) exhibits a hyperchaotic attractor for the parametric values  

    20,    14,   10.6,   4,   2.8a b c d r= = = = =                    (9) 

The Lyapunov exponents of the system (8) for the parametric values in (9) are 

1 2 3 41.8892,     0.2268,    0,     14.3130L L L L= = = = −    (10) 

Since there are two positive Lyapunov exponents in (10), the Zheng system (8) is hyperchaotic 

for the parametric values (9). 

The strange attractor of the hyperchaotic Zheng system is depicted in Figure 1. 

The hyperchaotic Yu system ([24], 2012) has the 4-D dynamics 

1 2

1 2 1

2 1 1 3 2 4

3 3

4 1

( )

x x

x x x

x x x x x x

x x e

x x

α

β γ

δ

ε

= −

= − + +

= − +

= −

&

&

&

&  

       (11) 

where , , , ,α β γ δ ε  are constant, positive parameters of the system. 

The Yu system (11) exhibits a hyperchaotic attractor for the parametric values  

  10,   40,   1,   3,   8α β γ δ ε= = = = =                    (12) 

The Lyapunov exponents of the system (11) for the parametric values in (12) are 

1 2 3 41.6877,     0.1214,    0,     13.7271L L L L= = = = −    (13) 

Since there are two positive Lyapunov exponents in (13), the Yu system (11) is hyperchaotic for 

the parametric values (12). 

The strange attractor of the hyperchaotic Yu system is displayed in Figure 2. 
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Figure 1. The Strange Attractor of the Hyperchaotic Zheng System 

 

Figure 2. The Strange Attractor of the Hyperchaotic Yu System 
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4. ACTIVE CONTROL DESIGN FOR THE HYBRID SYNCHRONIZATION OF 

HYPERCHAOTIC ZHENG SYSTEMS 

In this section, we design an active controller for the hybrid synchronization of two identical 

hyperchaotic Zheng systems (2010) and prove our main result using Lyapunov stability theory. 

The hyperchaotic Zheng system is taken as the master system, whose dynamics is given by 

  

  

1 2 1 4

2 1 2 4 1 3

2

3 1 3

4 2

( )x a x x x

x bx cx x x x

x x rx

x dx

= − +

= + + +

= − −

= −

&

&

&

&

         (14) 

where , , , ,a b c d r are positive parameters of the system and 
4x ∈R is the state of the system. 

The hyperchaotic Zheng system is also taken as the slave system, whose dynamics is given by 

   

  

1 2 1 4 1

2 1 2 4 1 3 2

2

3 1 3 3

4 2 4

( )y a y y y u
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= − +

&

&

&

&

             (15) 

where 
4

y ∈R is the state
 
 and 1 2 3 4, , ,u u u u are the active controllers to be designed. 

For the hybrid synchronization, the error e is defined as 

  

1 1 1

2 2 2

3 3 3

4 4 4

e y x

e y x

e y x

e y x

= −

= +

= −

= +

  
          (16) 

A simple calculation using the dynamics (14) and (15) yields the error dynamics as 

  

1 2 1 4 2 4 1

2 1 2 4 1 1 3 1 3 2

2 2

3 3 1 1 3

4 2 4

( ) 2 2

2
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e de u
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          (17) 

  



International Journal on Soft Computing, Artificial Intelligence and Applications (IJSCAI), Vol.2, No.2, April 2013 

26 

 

 

 

We choose the active controller for achieving hybrid synchronization as 

     

 

 

 

1 2 1 4 2 4 1 1

2 1 2 4 1 1 3 1 3 2 2

2 2

3 3 1 1 3 3

4 2 4 4

( ) 2 2

2

u a e e e ax x k e

u be ce e bx y y x x k e

u re y x k e

u de k e

= − − − + + −

= − − − − − − −

= + − −

= −

        (18) 

where ,  ( 1, 2,3, 4)ik i = are positive gains. 

Substituting (18) into (17), the error dynamics simplifies into 

       

1 1 1

2 2 2

3 3 3

4 4 4

e k e

e k e

e k e

e k e

= −

= −

= −

= −

&

&

&

&

  
                                                              (19) 

Thus, we get the following result. 

Theorem 4.1 The active control law defined by Eq. (18) achieves global and exponential hybrid 

synchronization of the identical hyperchaotic Zheng systems (14) and (15) for all initial 

conditions 
4(0), (0) .x y ∈R  

Proof.  The result is proved using Lyapunov stability theory [25] for global exponential 

stability. 

We take the quadratic Lyapunov function   

  ( )2 2 2 2

1 2 3 4( )
1 1

,
2 2

T
V e e e e e e e= = + + +                        (20) 

which is a positive definite function on 
4.R  

When we differentiate (18) along the trajectories of (17), we get 

   
2 2 2 2

1 1 2 2 3 3 4 4( )V e k e k e k e k e= − − − −&                                       (21) 

which is a negative definite function on 
4.R   

Hence, the error dynamics (19) is globally exponentially stable for all 
4(0) .e ∈R  

This completes the proof.   � 

Next, we illustrate our hybrid synchronization results with MATLAB simulations.  

The classical fourth order Runge-Kutta method with time-step 
8

10h
−

= has been applied to 

solve the hyperchaotic Zheng systems (14) and (15) with the active nonlinear controller (18).  
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The feedback gains in the active controller (18) are taken as 5,  ( 1, 2,3, 4).ik i= =  

The parameters of the hyperchaotic Zheng systems are taken as in the hyperchaotic case, i.e. 

  20,    14,   10.6,   4,   2.8a b c d r= = = = =
   

For simulations, the initial conditions of the hyperchaotic Zheng system (14) are chosen as 

      1 2 3 4(0) 14,   (0) 7,   (0) 5,   (0) 23x x x x= − = = − =  
 
 

Also, the initial conditions of the hyperchaotic Zheng system (15) are chosen as 

      1 2 3 4(0) 8,   (0) 21,   (0) 10,   (0) 27y y y y= = − = = −  

Figure 3 depicts the hybrid synchronization of the identical hyperchaotic Zheng systems.  

Figure 4 depicts the time-history of the anti-synchronization errors 
1 2 3 4
, , , .e e e e  

 

Figure 3. Hybrid Synchronization of Identical Hyperchaotic Zheng Systems 
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Figure 4. Time-History of the Hybrid Synchronization Errors 1 2 3 4, , ,e e e e  

5. ACTIVE CONTROLLER DESIGN FOR THE HYBRID SYNCHRONIZATION 

DESIGN OF HYPERCHAOTIC YU SYSTEMS   

In this section, we design an active controller for the hybrid synchronization of two identical 

hyperchaotic Yu systems (2012) and prove our main result using Lyapunov stability theory. 

The hyperchaotic Yu system is taken as the master system, whose dynamics is given by 

  
1 2
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2 1 1 3 2 4

3 3

4 1
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x x x x x x

x x e

x x
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= − + +

= − +

= −
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         (22) 

where , , , ,α β γ δ ε  
are positive parameters of the system and 

4x ∈R is the state of the system. 
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The hyperchaotic Yu system is taken as the slave system, whose dynamics is given by 

  

 

1 2

1 2 1 1

2 1 1 3 2 4 2

3 3 3

4 1 4
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y y y x y y u

y y e u

y y u
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δ

ε
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= − + + +

= − + +

= − +

&

&

&

&

  

  

            (23) 

where 
4

y ∈R is the state
 
 and 1 2 3 4, , ,u u u u are the active controllers to be designed. 

For the hybrid synchronization, the error e is defined as 

  

1 1 1

2 2 2

3 3 3

4 4 4
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e y x

= −

= +

= −

= +

  
          (24) 

We obtain the error dynamics as 

  
1 2 1 2

1 2 1 2 1

2 1 2 4 1 1 3 1 3 2

3 3 3

4 1 1 4

( ) 2

2

2
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e e e e u

e e x u

α α
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ε ε
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= + + + − − +

= − + − +

= − − +

&

&

&

&
 

          (25) 

We choose the active controller for achieving hybrid synchronization as 

     

 

1 2 1 2

1 2 1 2 1 1

2 1 2 4 1 1 3 1 3 2 2

3 3 3 3

4 1 1 4 4

( ) 2

2

2

y y x x

u e e x k e

u e e e x y y x x k e

u e e e k e

u e x k e

α α

β γ β

δ

ε ε

= − − + −

= − − − − + + −

= − + −

= + −

  

 

       (26) 

where ,  ( 1, 2,3, 4)ik i = are positive gains. 

By the substitution of (26) into (25), the error dynamics is simplified as 

       

1 1 1

2 2 2

3 3 3

4 4 4

e k e

e k e

e k e

e k e

= −

= −

= −

= −

&

&

&

&

  
                                                              (27) 

Thus, we obtain the following result. 
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Theorem 5.1 The active control law defined by Eq. (26) achieves global and exponential hybrid 

synchronization of the identical hyperchaotic Yu systems (22) and (23) for all initial conditions 
4(0), (0) .x y ∈R  

Proof.  The result is proved using Lyapunov stability theory [25] for global exponential 

stability. We take the quadratic Lyapunov function   

  ( )2 2 2 2

1 2 3 4( )
1 1

,
2 2

T
V e e e e e e e= = + + +                        (28) 

which is a positive definite function on 
4.R  

When we differentiate (26) along the trajectories of (25), we get 

   
2 2 2 2

1 1 2 2 3 3 4 4( )V e k e k e k e k e= − − − −&                                       (29) 

which is a negative definite function on 
4.R   

Hence, the error dynamics (27) is globally exponentially stable for all 
4(0) .e ∈R  

This completes the proof.   � 

Next, we illustrate our hybrid synchronization results with MATLAB simulations.  

The classical fourth-order Runge-Kutta method with time-step 
8

10h
−

= has been applied to 

solve the hyperchaotic Yu systems (22) and (23) with the active controller defined by (26).  

The feedback gains in the active controller (26) are taken as  

5,  ( 1, 2,3, 4).ik i= =  

The parameters of the hyperchaotic Yu systems are taken as in the hyperchaotic case, i.e. 

  
   

10,   40,   1,   3,   8α β γ δ ε= = = = =  

For simulations, the initial conditions of the hyperchaotic Yu system (22) are chosen as 

      1 2 3 4(0) 7,   (0) 2,   (0) 6,   (0) 1x x x x= = − = =  
 
 

Also, the initial conditions of the hyperchaotic Yu system (23) are chosen as 

      1 2 3 4(0) 5,   (0) 4,   (0) 1,   (0) 8y y y y= = = =  

Figure 5 depicts the hybrid synchronization of the identical hyperchaotic Yu systems.  

Figure 6 depicts the time-history of the hybrid synchronization errors 1 2 3 4, , , .e e e e  
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Figure 5. Hybrid Synchronization of Identical Hyperchaotic Yu Systems 

 

Figure 6. Time-History of the Hybrid Synchronization Errors 1 2 3 4, , ,e e e e
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6. ACTIVE CONTROLLER DESIGN FOR THE HYBRID SYNCHRONIZATION OF 

HYPERCHAOTIC ZHENG AND HYPERCHAOTIC YU SYSTEMS 

In this section, we design an active controller for the hybrid synchronization of hyperchaotic 

Zheng system (2010) and hyperchaotic Yu system (2012) and establish our main result using 

Lyapunov stability theory. 

The hyperchaotic Zheng system is taken as the master system, whose dynamics is given by 

  

1 2 1 4

2 1 2 4 1 3

2

3 1 3

4 2

( )x a x x x

x bx cx x x x

x x rx

x dx

= − +

= + + +

= − −

= −

&

&

&

&
  

      (30) 

where , , , ,a b c d r are positive parameters of the system and 
4x ∈R is the state of the system. 

The hyperchaotic Yu system is taken as the slave system, whose dynamics is given by 

  
1 2

1 2 1 1

2 1 1 3 2 4 2

3 3 3

4 1 4

( )

y y

y y y u

y y y x y y u

y y e u

y y u

α

β γ

δ

ε

= − +

= − + + +

= − + +

= − +

&

&

&

&

  

  

            (31) 

where 
 , , , ,α β γ δ ε are positive parameters of the system,

4
y ∈R is the state

 
 and 

1 2 3 4, , ,u u u u

are the active controllers to be designed. 

For the hybrid synchronization, the error e is defined as 

  

1 1 1

2 2 2

3 3 3

4 4 4

e y x

e y x

e y x

e y x

= −

= +

= −

= +

  
          (32) 

We obtain the error dynamics as 

  
1 2

1 2 1 2 1 4 1

2 1 1 2 2 4 1 3 1 3 2

2

3 3 3 1 3

4 1 2 4

( ) ( )

y y

e y y a x x x u

e y bx y cx e y y x x u

e y rx e x u

e y dx u

α

β γ

δ

ε

= − − − − +

= + + + + − + +

= − + + + +

= − − +

&

&

&

&
 

          (33) 
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We choose the active controller for achieving hybrid synchronization as 

    

 

1 2

1 2 1 2 1 4 1 1

2 1 1 2 2 4 1 3 1 3 2 2

2

3 3 3 1 3 3

4 1 2 4 4

( ) ( )

y y

u y y a x x x k e

u y bx y cx e y y x x k e

u y rx e x k e

u y dx k e

α

β γ

δ

ε

= − − + − + −

= − − − − − + − −

= − − − −

= + −

   

 

 

 

       (34) 

where ,  ( 1, 2,3, 4)ik i = are positive gains. 

By the substitution of (34) into (33), the error dynamics is simplified as 

       

1 1 1

2 2 2

3 3 3

4 4 4

e k e

e k e

e k e

e k e

= −

= −

= −

= −

&

&

&

&

  
                                                              (35) 

Thus, we obtain the following result. 

Theorem 6.1 The active control law defined by Eq. (33) achieves global and exponential hybrid 

synchronization of the hyperchaotic Zheng system (30) and hyperchaotic Yu system (31) for all 

initial conditions 
4(0), (0) .x y ∈R  

Proof.  The proof is via Lyapunov stability theory [25] for global exponential stability. 

We take the quadratic Lyapunov function   

  ( )2 2 2 2

1 2 3 4( )
1 1

,
2 2

T
V e e e e e e e= = + + +                        (36) 

which is a positive definite function on 
4.R  

When we differentiate (34) along the trajectories of (33), we get 

   
2 2 2 2

1 1 2 2 3 3 4 4( )V e k e k e k e k e= − − − −&                                       (37) 

which is a negative definite function on 
4.R   

Hence, the error dynamics (35) is globally exponentially stable for all 
4(0) .e ∈R  

This completes the proof.   � 

Next, we illustrate our hybrid synchronization results with MATLAB simulations.  

The classical fourth order Runge-Kutta method with time-step 
8

10h
−

= has been applied to 

solve the hyperchaotic systems (30) and (31) with the active controller defined by (34).  



International Journal on Soft Computing, Artificial Intelligence and Applications (IJSCAI), Vol.2, No.2, April 2013 

34 

 

 

 

The feedback gains in the active controller (34) are taken as 5,  ( 1, 2,3, 4).ik i= =  

The parameters of the hyperchaotic Zheng and hyperchaotic Yu systems are taken as in the 

hyperchaotic case, i.e. 

    20,  14,  10.6,  4,  2.8,  10,  40,  1,  3,  8a b c d r α β γ δ ε= = = = = = = = = =  

For simulations, the initial conditions of the hyperchaotic Xu system (30) are chosen as 

      1 2 3 4(0) 7,   (0) 4,   (0) 10,   (0) 8x x x x= = − = − =  
 
 

Also, the initial conditions of the hyperchaotic Li system (31) are chosen as 

      
1 2 3 4
(0) 1,   (0) 7,   (0) 24,   (0) 15y y y y= = = − =  

Figure 7 depicts the hybrid synchronization of the non-identical hyperchaotic Zheng and 

hyperchaotic Yu systems.  

Figure 8 depicts the time-history of the hybrid synchronization errors 1 2 3 4, , , .e e e e  

 

Figure 7. Hybrid Synchronization of Hyperchaotic Zheng and Yu Systems 
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Figure 8. Time-History of the Hybrid Synchronization Errors 1 2 3 4, , ,e e e e  

7. CONCLUSIONS 

This paper derived new results for the active controller design for the hybrid synchronization of 

hyperchaotic Zheng systems (2010) and hyperchaotic Yu systems (2012). Using Lyapunov 

control theory, active control laws were derived for globally hybrid synchronizing the states of 

identical hyperchaotic Zheng systems, identical hyperchaotic Yu systems and non-identical 

hyperchaotic Zheng and Yu systems. MATLAB simulations were shown for the hybrid 

synchronization results derived in this paper for hyperchaotic Zheng and Yu systems. 
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