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ABSTRACT 

Multiple Input Multiple Output (MIMO) technology is going to be a viable alternative for future 

generation wireless broadband services in order to meet the striving requirements for throughput and 

system robustness. In Long Term Evolution (LTE), MIMO technologies have been broadly used to get 

better downlink peak rate, cell coverage, as well as average cell throughput. In the present paper a 2x2 

MIMO is taken as baseline configuration for a LTE downlink under a Microcellular propagation 

scenario considering a non physical correlation based channel with Poor and rich scattering 

environment. The throughput capacity of the downlink is obtained for poor and rich scattering 

environments. Besides, two vital aspects of MIMO technique viz Spatial Multiplexing (SM) and Transmit 

Diversity (TD) are investigated in order to see their effect on throughput of the system. The effect of 

parameters like Speed of mobile station, number of Multipath, Rician factor (K) on throughput of such 

systems is reported and discussed. The investigations reported in this paper helps in estimating the 

throughput capacity of LTE downlink under SM and TD mode. 
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1. INTRODUCTION 

In wireless communications, spectrum is an important resource and hence imposes a high cost 
on the high data rate transmission. Fortunately, the emergence of multiple antenna system has 
opened another very resourceful dimension – space, for information transmission in the air. A 
number of studies have demonstrated that multiple antenna system provides very promising 
gain in capacity without increasing the power and spectrum [1]. The 3rd Generation Partnership 
Project (3GPP) recommends specifications of Long Term Evolution (LTE), MIMO 
technologies have been broadly used to get better downlink peak rate, cell coverage, as well as 
average cell throughput. The main goals of LTE include improving spectral efficiency in 3G 
networks, allowing carriers to provide more data and voice services over a given bandwidth, 
lowering costs, improving services, making use of new spectrum and reframed spectrum 
opportunities, and better integration with other open standards. LTE has introduced a number of 
new standards to allow IP based wireless mobile broadband. The hybridization of  Multiple 
input multiple output (MIMO) technologies with LTE has generated features such as spatial 
multiplexing, transmit diversity, and beam forming for better speed and efficiency to support  
future broadband data service over wireless links [2,3]. The consequence of mobile speed on 
the performance of 2X2 LTE Downlink MIMO is established in a study reported by Arne 
Simonsson [4]. He quantified the performance deprivation with reference to the speed of the 
mobile. The present paper summarizes the studies undertaken pertaining to 2x2 MIMO for LTE 
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downlink standard. The performance of the down link is analyzed under various multi path 
fading conditions under microcellular propagation environment. The LTE adopts two major 
MIMO technologies i.e. Spatial Multiplexing (SM) and Transmit diversity (TD). Spatial 
multiplexing allows transmitting different streams of data simultaneously on the same downlink 
resource block(s) this increases the data rate of the user [5]. In Transmit Diversity a single 
stream of data is assigned to the different layers and coded using Space Time Block Coding 
(STBC). STBC achieves robustness through temporal diversity by using different subcarriers 
for the repeated data on each antenna [6]. For the LTE downlink, a 2x2 configuration for 
MIMO is assumed as baseline configuration, i.e. 2 transmit antennas at the base station and 2 
receive antennas at the terminal side. Besides, correlation Matrix, a vital channel parameter, is 
analyzed for of Non – Physical correlation based wireless channel under Poor and rich 
scattering environment. 

2. 2×2 MIMO CORRELATION CHANNEL THEORY 

A non-physical correlation channel model [10,17] is considered to describe MIMO Correlation 
model, generally site-independent and are mostly used for system design, comparison and 
testing. Correlation-based modeling refers to the spatial correlation present among multipath 
components arriving with different angle of arrivals and powers at the receiver. The Spatial 
Correlation matrix can be represented by Kronecker product technique as given by [7]: 
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*MS for the Mobile Station. The values of α 

and β can be selected to represent different types of channels, and often real values in the range 

from 0-1 are used [7].  

3. SYSTEM DESIGN AND PARAMETERS 

The schematic diagram of the system is shown in figure 1. The LTE downlink for 2x2 MIMO 
with two transmit and two receive antenna is designed using Agilent’s SystemVue tools. A 
typical channel bandwidth of 10 MHZ with carrier frequency of 2 GHz is selected with FDD 
duplex scheme and OFDMA access scheme for downlink. The modulation type supported is 16 
QAM, a superior modulation scheme for 2x2 MIMO applications [8, 11]. The Physical 
Downlink Shared Channel (PDSCH) is used as downlink for data transportation across the LTE 
radio interface. We have used a correlation channel with finite discrete multipath components 
which are considered to be uniformly distributed about the transmitter and receiver. Each 
multipath component is considered uncorrelated and characterize by angle of arrival, angular 
spread and path gain. Two multipath scenarios, first rural one with poor scattering and second 
urban microcellular with rich scattering environment are investigated. The antenna-to-antenna 
spacing at transmitting end is assumed to be 2 λ and 0.5λ at receiving end.  
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Figure 1. 2×2 MIMO LTE Schematic Design 

 

4. RESULTS & DISCUSSIONS  

This model performs the averaged closed-loop HARQ throughput over sub frames, from 
‘Subframe Start’ to ‘Subframe Stop’ for both PDSCH and PUSCH channel [8].  Each firing, 
one token is consumed at both 'TBS' port and 'CRC Parity' port. The data input from the 'TBS' 
port indicates the transport block size for each subframe. If the input value at this port is '0', it is 
assumed that no transport block is allocated in this subframe. The data input from the 
'CRCParity' port is the CRC check result for each subframe, where '1' means CRC check is 
successful and '0' means CRC check fails[9] 

a.) The throughput fraction of the system designed in presence of poor and rich scattering is 
investigated. A Poor scattering scenario is assumed to have 4 multipath components 
representing a rural propagation environment and a Rich scattering scenario is assumed to 
have 12 multipath components representing an Urban microcellular Propagation 
environment [17,18]. Besides the scenario Rayleigh distribution and rician distribution by 
varying the values of K factor from 0 to 6 are also investigated to see their effect on 
throughput performance of  the system. 

 

 

Figure 2.1. Throughput fraction v/s SNR for Spatial Multiplexing ( Rayleigh Distribution ) 
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Figure 2.2. Throughput fraction v/s SNR for Spatial Multiplexing (Rician Distribution  K=6) 
 

 

Figure 2.3. Throughput fraction v/s K- Factor for Spatial Multiplexing in poor scattering 
environment (SNR 14: dB) 

 

The Figure 2.1 reveals that in noisy channel for SNR below 12dB, multipath do not have any 
significant effect on Throughput fraction. One of the interesting results of SM reveals that the 
throughput fraction increases almost by two fold when propagation environment is shifted from 
poor scattering to rich scattering. One of the critical observations derived from fig 2.2 is that 
under spatial multiplexing mode at relatively low SNR (well below 13dB) the rician factor ‘K’ 
is the deciding factor of throughput of the system. Fig 2.3 shows that throughput increases 
almost linearly when value of K changes from 0 to 1. 
 

 

Figure 2.4. SNR v/s Throughput fraction for Transmit Diversity( Rayleigh Distribution ) 
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Figure 2.5 SNR v/s Throughput fraction for Transmit Diversity (Rician Distribution K=6) 
 

 

 

Figure 2.6. Throughput fraction v/s K-factor for Transmit Diversity in poor scattering 
environment (SNR: 7dB) 

 
Fig 2.4 reveals that in TD mode no. of multipath do not have a significant effect on throughput 
fraction. As channel conditions improves throughput remains constant (well above 6 dB).Fig 
2.5 and 2.6 shows that Presence or absence of LOS component does not affect the throughput 
fraction. 
 
b.) In mobile environment the vehicle speed is a key factor affecting the data rate of the 

system. Four vehicle speeds 3, 20, 40, 60Km/hr are separately undertaken to see its effect 
on throughput performance of the system. 
 

 

Figure 3.1. SNR v/s Throughput fraction for Spatial Multiplexing with speed variation in Poor 
scattering environment 
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Figure 3.2. SNR v/s Throughput fraction for Transmit Diversity with speed variation in Poor 
scattering environment 

 
As shown in figure 3.1, in Spatial multiplexing mode, vehicular speed is a key parameter in 
deciding the throughput of the system. As the speed of Mobile station increases from 20Km/hr 
to 60Km/hr throughput decreases to about 50%. However, figure 3.2 reveals that in transmit 
diversity mode mobility of receiver doesn’t affect the system throughput. 

 
c) The channel capacity of the system under investigation is sensitive to the multipath 
environment for different fading distributions. Fig 4.1 and 4.2 indicate channel capacity 
variations with SNR for Spatial Multiplexing and Transmit Diversity respectively. 

 

 

Figure 4.1. Capacity v/s SNR  for Spatial Multiplexing   
 

From figure 4.1 it is observed that in spatial multiplexing case the channel capacity obtained is 
highest in rich scattering environment. A linear variation of capacity with SNR is obtained. In 
the absence of LOS one can notice that capacity in poor scattering environment is 20% lower 
than rich scattering for a particular SNR, whereas presence of LOS component enhances the 
capacity for both the environments up to 17%. 

From figure 4.2 it is revealed that in Transmit diversity case also the channel capacity obtained 
is highest in rich scattering environment. In the absence of LOS one can notice that capacity in 
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poor scattering environment is 14% lower than rich scattering for a particular SNR, whereas 
presence of LOS component enhances the capacity for both the environments up to 22%. 

 

Figure 4.2. Capacity v/s SNR for Transmit Diversity   

5. CONCLUSION 

We have investigated the throughput fraction of 3GPP- Long Term Evolution (LTE) downlink 
system under two popular modes i.e. Spatial Diversity which is commonly used for quality 
improvement and Spatial Multiplexing which on the other hand is popular in increasing the data 
rate. These two investigations were in the presence of poor as well as rich scattering channel 
conditions. The observation were bold and enough that the Presence of rich scattering 
environment enhances the system performance. In order to gain full advantage of spatial 
multiplexing the Signal to Noise Ratio (SNR) should be reasonably good while on the other 
hand transmit Diversity is a better contender for systems operating at relatively low SNR. 
Through the simulated results it can be very well proved that the region near the edge of the cell 
where signal strength is relatively low, it is preferable to use diversity based signal stream 
transmission strategies. As it only requires one spatial channel which is to be significantly 
stronger than that of the other.  In contrast to this the region when the signal strength is 
relatively high near the base station, it is beneficial to use Spatial multiplexing strategies. We 
have also envisaged that the relative strength of the direct and scattered component very well 
expressed by the Rician factor “K” provides an indication of the link Quality. Through our 
findings and simulated investigation we may easily say that strategies like spatial multiplexing 
are undesirable for high-speed users whereas Transmit diversity strategy is attractive for high-
speed users. 
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