
International Journal of Network Security & Its Applications (IJNSA), Vol.6, No.3, May 2014

DOI : 10.5121/ijnsa.2014.6301 01

PRIVACY PROTECTION FOR ROLE-BASED

ACCESS CONTROL IN SERVICE ORIENTED

ARCHITECTURE

Helen Cheung, Celia Li, Ye Yu, Cungang Yang

Department of Electrical and Computer Engineering

Ryerson University

Toronto, ON, Canada

ABSTRACT

Service Oriented Architecture (SOA) changes the way of conducting business by opening their services to

the larger business world over the networks. However, the “open” and “interoperable” properties of SOA

make privacy a sensitive security issue. In SOA, service providers (SPs) limit permission of access to

specific authorized Access Requestors (ARs). SPs need to verify ARs’ identity information, but ARs may not

willing to disclose their privacy to unknown SPs in an open system. To solve this conflict in SOA

environment, we propose privacy preserving protocols for role-based access control (RBAC) in the SOA

environment. The security analysis demonstrates that our protocols are privacy protected. Moreover, the

implementation of the proposed protocols are compatible with current SOA standards and technologies

such as XACML and SOAP.

KEYWORDS

Privacy Protection, Service Oriented Architecture, Role-based Access Control, XACML.

1. INTRODUCTION

Service Oriented Architecture (SOA)[1] is a paradigm for organizing and utilizing distributed

capabilities that are under the control of different ownership domains. SOA consists of multiple

autonomous systems that communicate through networks. SOA is loose coupled: sub-systems

under SOA do not communicate with each other directly. Instead, they communicate through

services. Core components of SOA include service consumer, service provider and service broker

Recently, security is becoming a major concern for SOA popularization and promotion[2][3][4].

Organizations and IT industry giants such as W3C, WS-I, OASIS, IBM are working on SOA

security architecture, standards and protocols. The SOA security framework[5] provides us a

clear picture of major achievements in SOA security research and implementations. However,

this framework does not provide identity privacy protection. Since SOA is loosely coupled by

individual systems, clients are not willing to disclose their identity information (business identity

or personal identity) to unknown SPs. The lack of identity privacy protection of current SOA

security framework is the main motivation of this research works.

In SOA, RB-XACML is a modified version of traditional XACML in which XACML policy

meet features of RBAC, such as roles, permission to role assignments etc. RB-XACML has the

following weaknesses:

International Journal of Network Security & Its Applications (IJNSA), Vol.6, No.3, May 2014

2

• No authoritative and recognized organization provide unified roles, attributes definitions

and attributes-to-roles assignment rules. As a result, it causes lots of coordination and

maintenance work.

• The user-role assignment is based on attributes and a RA's (Role Assigner) role is an

“attribute value”. In SOA, ARs' attributes are transported between sub-systems or

components, which is not a privacy friendly method because an AR may not want its role

to be disclosed to unknown SPs either.

To solve the above problems, RBAC [6][7] in SOA is divided into two separate processes: login

& role assignment, and access request & response. Login & role assignment process is handled

by a independent system apart from traditional SOA structure. Access request & response

process is still operated within SOA. This approach simplifies the system maintenance work.

In addition, we provide privacy preserving protocols for both processes. The privacy protection

solution in login & role assignment process supports two operations: attributes value exchange

and policy mapping. Two protocols are proposed to achieve privacy protection for the attributes

value exchange. However, the second protocol is a complete ZERO knowledge disclosure

protocol because RA in the first protocol may get to know the number of valid credentials AR

holds. For policy mapping operation, we propose two protocols for mapping role assignment

policies with attributes values. The first protocol is cryptography-based and handled by the AR.

This protocol discloses some of RA’s policies privacy such as which values are required for a

role and the number of credentials the role requires, etc. The second protocol relies on a trust

third party - Policy Verifier (PV). It is a complete privacy preserving solution for RA’s attributes-

to-role policies with ZERO policies knowledge disclosure.

The privacy protection solution for access request & response process needs to consider more on

efficiency, system integration and compatibility. There are two types of access request:

information access (required information can be sent to access requestor) and service access

(access requestor needs permission of access to a specific function, service or webpage). Two

sets of protocols are introduced for these two access requests. They are not ZERO knowledge

disclosure protocols. However, without the involvement of complicated cryptography

computation, they have greatly improved privacy protection than traditional SOA access control

technology. Moreover, the solution is able to be implemented based on current SOA standards

such as XACML, SOAP etc., and are practical and feasible to be implemented.

The rest of the paper is organized as follows. Section 2 discusses related work. In section 3, we

propose a new RBAC scheme for SOA. Section 4 discuss privacy protection protocols for login

& role assignment process. The privacy preserving protocol for access request & response are

presented in section 5. Section 6 explain the security analysis of the proposed protocols. The

implementation of the proposed protocols is explained in section 7. Finally, section 8 concludes

the paper.

2. RELATED WORKS

T. Yu proposed “interoperable strategies for automated trust negotiation” [8]. He tried to protect

sensitive credentials and services with access control policies and establishing trust incrementally

through a sequence of credential disclosures. Complicated information exchange model are

created to built trust negotiation. The disadvantages of his solution are obvious: it’s not

cryptography level solution and is easily for attacker to find security leak from the proposed

International Journal of Network Security & Its Applications (IJNSA), Vol.6, No.3, May 2014

3

model. Also, it’s not able to handle situation of dead cycling where both parties are not willing to

first disclose their information. Furthermore, this solution is not manageable because different

individuals have different standard to measure “sensitive” information. As a result, it’s hard for

their counterparts to handle different standards.

The Oblivious Signature-Based Envelope[9] approach proposed by W. Du is a cryptography-

based solution, which perfectly solved the dead-cycling issue. The basic idea of this approach is

that sender encrypts message in an “oblivious signature-based envelope” that receiver can open

the envelope if he has the required certificate. The sender cannot know whether the receiver has

the certificate. Oblivious Signature-Based Envelope is built on Identity-Base Encryption

technology where sender encrypts sensitive information with receiver's ID as public key. Only

receiver can decrypt it by private key from a trusted third party. This scheme is used to protect

privacy for identity-based access control. It can be applied for a sender and a receiver, but cannot

be directly used for the privacy protection of a distributed system, such as SOA.

K. Frikken introduced an attribute-based access control with hidden policies and credentials[10].

He discussed attribute and policy privacy protection in a more complicated access control

environment. It provides a complete privacy-preserving solution for access requestor but cannot

efficiently protect information provider’s access policies.

J. Li et al. initiated an oblivious attribute certificates [11], which is actually a combination of the

ideas proposed in [9] and [10]. It took use of similar technologies used in [10] to expand idea of

[9] and it had the same shortcoming of [10]. Moreover, this approach is used for attributes-based

access control rather than RBAC.

D. Yao et al. proposed a compact and anonymous role-based authorization chain[12], which

discussed privacy protection in RBAC scenario. This paper provided privacy protection solution

for the role privilege delegation scenarios. For example, a staff of a company with “IT Manager”

role can pass the role privileges to a contractor without revealing his identity information. The

solution is designed only to be applied in specific scenarios. In addition, it is inefficient because

every delegation process needs a new one time key generation and signing permit.

3. ROLE-BASED ACCESS CONTROL IN SOA

The access process of SOA is comprised of two separate processes: login & role assignment and

access request & response. Login & role assignment process is separated from typical SOA

access control process. It is handled by a separate and independent sub-system. Access request &

response process is still a part of traditional SOA structure.

Login is always the first step for all system’s access. In our solution, clients or Access

Requestors (AR) need to login before sending access requests. Their attributes will be verified

and roles will be assigned based on their verified attributes during the login process. The roles

assigned to ARs are unified within the SOA range which are recognized and used by all

individual systems.

Figure 1 provides an overview of login & role assignment process. Two independent third

parties, RA and PV, are involved in the process. AR, a client or server requestor, obtains eligible

roles through the interactions with RA and PV during the login process. RA works as an

independent third party to maintain role-to-user assignment polices for all sub-systems. RA is a

centralized and unified role assignment organization for SOA. RA collects and maintains

International Journal of Network Security & Its Applications (IJNSA), Vol.6, No.3, May 2014

4

individual access policies from individual systems and unifies & integrates these policies into

global policies which can be applied to all individual systems.

Certificate Authority (CA) provides attribute credential for AR. The CA verifies AR’s attributes

and issues credentials based on verified attributes. With the support from the Identity Based

Encryption (IBE) technology, attributes credentials function as private key during the role

assignment process.

Figure 1: Login & Role Assignment Process

The login & role assignment process can be divided into the following three stages:

(1) AR sends access request to RA. AR and RA then are engaged in a value exchanged

process (see section IV for details). AR will get a group of values representing the attributes

credentials AR holds.

(2) AR then provides PV with the values he received from the first stage. RA provides PV

with AR's value and policy string.

(3) PV will compare the values provided by AR and policies provided by RA, then PV will

assign suitable roles to AR.

During the login & role assignment process, RA & PV know nothing about AR’s attributes. AR

and PV know nothing about RA’s policies.

From the proposed RBAC scheme of the SOA model, we have privacy concerns for the

following two processes:

• Login and role assignment

• Access request and response

The solution to protect privacy of the login and role assignment process will be explained in

section IV. The solution to protect privacy of the access request and response process will be

illustrated in section V.

4. PRIVACY PROTECTION PROTOCOLS IN VALUES EXCHANGE AND POLICY

MAPPING

Three parties are involved in the login and role assignment process. They are AR, RA and PV.

AR is the client of SOA. RA is an independent party above the composed units of SOA. RA

maintains unified roles assignment policies that are agreed by all individual systems. AR is

assigned roles by RA based on AR's attributes. In order to decide which role should be assigned

International Journal of Network Security & Its Applications (IJNSA), Vol.6, No.3, May 2014

5

to AR, RA has to verify AR’s attributes. However, AR may not willing to disclose his attributes

to RA. That’s the first privacy issue we need to solve. In addition, RA also needs to protect the

privacy of his role assignment policies. That is, AR should not be able to guess or extrapolate

RA’s role assignment polices during the role assignment process. This is the second privacy

protection issue we need to deal with.

Notations used in this section and the rest part of the paper are listed in the following table.

Name Description

ATTRi Attributes i where i ∈ {1, n}. n is the number

attributes

ki The ith attribute

I(ki, ATTRi) Identity-based encryption on ki using ATTRi as

public key

CRED j Credentia for attribute j where j ∈ {1, m} and m is

the number of credentials

I-1(I(ki, ATTRi), CREDj) Decryption of I(ki, ATTRi). CRED j is the privacy

key.

SETINT(ki[0], {Di,1 … Di,m},

EA)
A “Set Intersection”. Output is EA[x], if ki[0] ∈

{Di,1 … Di,m} and x = 0 else x will be a random

number.

Enc(P, ki[1]) Symmetric key encryption of P using ki[1] as

encryption.

Enc(Enc(Enc(RCreds, k1),

k2)….kn

Symmetric key encryption on RCreds n times using

k1, k2,…, kn as key.

Enc-1 (Enc-1 (Enc-1 (RCreds, cn),

cn-1)….c1)

Decryption “ERCreds” n times using c1, c2, …, cn as

key.

EK(i) Identity-based encryption on i using K as public key.

K is a required role.

EK(S) Identity-based encryption on “S” using K as public

key. S is a random number.

Table 1: Notation

A. Solution One for Value Exchange

The first privacy preserving protocol is shown in Figure 2. Steps of the protocol are as follows:

1: For each attributes ATTRi required by all roles, RA created two random keys ki[0] & ki[1], and

a public marker P. RA encrypts each ki[0] by ATTRi and send Εi (the ith attribute of RA) and P

to AR. Now, for each ATTRi, RA has a random key pair (ki[0], ki[1]), the public marker P and

Εi.

2: For each value αi and AR's credentials CREDj, AR generates Di,j = I
-1

(Εi, CREDj). If he holds

m credentials, then he will get m D values for each Εi. AR then creates the homomorphic

encryption system EA[13]. For each received Ei, AR gets a group values of the set (Di,1 … Di, m),

which are calculated by Di,j=I
-1

(Ei, CREDj).

3: AR and RA engage in the set intersection protocol[14], SETINT(ki[0], {Di,1 … Di, m}, EA).

AR’s input are {Di,1 … Di,m} and EA. RA’s input is ki[0]. If there exists one value in the set

{Di,1 … Di,m} equal to ki[0], RA knows EA[0]. Otherwise, it will be a random value.

International Journal of Network Security & Its Applications (IJNSA), Vol.6, No.3, May 2014

6

For each attributes or Εi that RA sends to AR, RA gets EA[xi]. xi is 0 if AR has the credential.

Otherwise, xi will be a random number.

4: RA calculates δi = EA[x i] * EA[k i[1]] = EA[xi + ki[1]]. He creates ordered pairs (δi, Enc(P, k

i [1])) and sends the pairs to AR. Also, for each attribute or value, RA calculates Enc(P, k i [1])

and δ i = EA[xi] * EA[ki[1]] = EA[xi + ki[1]] and sends them to AR.

5: When AR receives the pairs, he computers ηj = DA(δj) and Dec(Enc(P, kj [1]), ηj). If AR has

the credential of ATTRj, (ηj = kj[1]), he gets P or he gets a random number. If AR gets P, he

keeps kj[1], which prove that he holds a valid credential. AR will get P if he could successfully

decrypt Εi by Di,j = I-1(Ei, CREDj) or AR cannot know P.

The privacy preserving protocol ensures that AR knows nothing about RA’s policy and RA

knows nothing about AR’s credentials. However, AR knows the number of valid credentials he

holds. To ensure that AR could not even know it, we introduce the second solution, which is a

complete privacy preserving protocol.

Figure 2: Values Exchange - Solution One

B. Solution Two for Value Exchange

The second privacy preserving protocol is shown in Figure 3. The steps of the protocol is as

follows:

1: For each attributes ATTRi required by all roles, RA created two random keys ki[0] & ki[1].

RA encrypts each ki[0] by ATTRi and send Εi (the ith attribute of RA) to AR.

2: AR creates a semantically secure homomorphic encryption system EA. For each value αi

and credentials CREDj, he calculates Di,j = I-1(Εi, CREDj) for every Ei he received. If he holds m

credentials, then he will get m D values for each Εi.

3: AR and RA engage in Set Intersection protocol, SETINT(ki[0], {Di,1 … Di, m}, EA). AR’s

input are {Di,1 … Di,m} and EA. RA’s input is ki[0]. If one value in {Di,1 … Di,m} equals to ki[0],

RA gets to know EA[0]. Otherwise, it will be a random value. For each attribute or Εi he sent to

AR, RA gets the value of EA[xi] (xi = 0 if AR has the credential or xi will be a random number).

4: RA calculates δ i = EA[x i] * EA[k i[1]]] = EA[x i + k i [1]] and sends δi to AR.

5: When AR receives the pairs, he computers ηj = DA(δj). Since there is no public marker P,

he cannot know if ηj is ki[1] or not. For each required attributes, AR will get a value ki[1] if he

International Journal of Network Security & Its Applications (IJNSA), Vol.6, No.3, May 2014

7

holds the credential for the attribute or a random value if he does not holds the credential.

However, AR does not know if he gets a ki[1] or a random number.

6: For each attribute ATTRi, RA and AR engaged in a 1-out-of-2 OT

protocol[15][16][17][18]. RA’s input is the list of {ri[0], Enc(ri[1], ki[1])}, and AR’s input is η,

which is ki[1] if he has the credential or a random value if he does not have it. If his input is ki[1],

he decrypts Enc(ri[1], ki[1]), and gets ri[1] or he gets ri[0]. AR sends list of ri[1] or ri[0] i ∈ {1, n}

to PV.

Figure 3: Values Exchange - Solution Two

C. PRIVACY PRESERVING PROTOCOL FOR POLICY MAPPING

After the credential verification process, AR has a bunch of values, some of them represent

credentials he holds. These values will be mapping to RA’s policies. Roles will be assigned to AR

based on the mapping result. This step is handled by policy mapping methods that we will discuss

in this section.

Solution One for Policy Mapping

If an AR matches all attributes of a role, he will be assigned credential of the role, RCreds. In

RA’s policy, there are n attributes required for the role, and there are n key values{k1, k2 … kn}

accordingly. To get RCreds, RA must ensure that AR owns all these keys. Figure 4 provides us

with steps of solution one for policy mapping. The protocol is shown as below:

1: RA picks up n random numbers {q1, q2,…qn}. He encrypts the numbers using {k1, k2 …

kn} as keys. Note that Eqj = Enc(qj, kj) and j∈{1, n}.

2: RA encrypts RCreds n times by {k1, k2 … kn} in the same order as he creates Eqj. RA gets

RCreds = Enc(Enc(Enc(RCreds, k1), k2)….kn). RA then pass {q1, q2,…qn}, {Eq1, Eq2, …Eqn} and

ERCreds to AR.

3: After AR receives the values, he calculates Y=Enc-1(Eqn, c) where c ∈ CC. If Y

equals to qn, then c= kn. AR keeps the value and decrypts other values of Eqn-1…Eq1. If AR

decrypt the values, he gets all required keys {c1, c2 … cn} that are equal to {k1, k2 … kn}.

International Journal of Network Security & Its Applications (IJNSA), Vol.6, No.3, May 2014

8

4: AR applies the keys kn, …k2, k1 to decrypt ERCreds and gets RCreds as role’s credential

Creds = Enc
-1

 (Enc
-1

 (Enc
-1

 (RCreds, kn), kn-1)….k1). If AR cannot get a value in {q1, q2,…qn}, he

cannot have all keys of the set {k1, k2 … kn} and he is not qualified for the role’s credential.

After this process, AR is able to know the number of valid attribute credentials he has, the

amount of valid c values, the number of valid credentials RA requires for each role, and the

values required for a specific role. Though RA has no idea of AR’s credentials, the solution is

still not a complete privacy preserving one.

Figure 4: Policy Mapping - Solution one

Solution Two for Policy Mapping

To provide a complete privacy preserving scheme, a trusted third party PV is involved to handle

the policy mapping task. In this approach, PV receives all policy lists from RA (p1(k11, k12,…k1

n1), p2(k21, k21,…k2 n2),…). PV gets all AR’s key values set CC. PV will then map policies with

AR’s value with the following steps:

1. PV picks up one policy value set that is received from RA

2. PV checks if the role is constraint with other roles that are already assigned to AR.

3. PV checks if its parent role has already assigned to AR, if yes, assign this role to AR.

4. PV picks up one value in policy value set, and search the value from AR’s value set. If

finds a match, then picks up the next value in policy value set. If not found, return to step

1 to pick up another role’s value set.

5. Repeat step 4 until the last value.

6. If all values are matched, then assign the role to AR.

7. Repeat step 1 until the last policy value set.

PV receives all policies that are represented by set of values from RA. PV has no knowledge

about the values represents which attribute. As a result, PV knows nothing about RA’s policies.

Similarly, PV has no knowledge about AR’s credentials either because PV does not know the

relationship between the value and the credentials/attributes. The introduction of the third party

PV has thus provided perfect privacy protection during the role mapping process.

International Journal of Network Security & Its Applications (IJNSA), Vol.6, No.3, May 2014

9

5. PRIVACY PRESERVING PROTOCOLS FOR ACCESS REQUEST & RESPONSE

RB-XACML[18] is the standard to implement the core and hierarchical components of ANSI

standard in SOA including roles, role hierarchies, permission-role assignment relation and user-

role assignment relation. In RB-XACML, AR's role exists as an “attribute value”. AR’s attributes

are transported between sub-systems or components. This is not a privacy friendly method

because the AR may not want his role to be disclosed to SPs. We thus present the following

protocols to provide the privacy protection of roles during the information access request process

and service access request process.

A. Privacy Protection Protocol for Information Access Request

Role’s privacy may not be as sensitive as personal attributes such as id, position, age and gender

etc. However, it’s desirable and valuable for the privacy protection of roles. In this paper, we

make the privacy protection of roles as an option for AR who may choose his access request as

“privacy mode”. In most cases, AR & SP follow traditional SOA access control standards to

realize access control. When “Privacy Mode” option is selected, SOA will follow the role privacy

protection protocol for information access request illustrated in Figure 5.

Figure 5: Privacy Protection Protocol for Information Access Request

The protocol is based on IBE technology. SP encrypts required information with role’s title as

public key, and sends the cipher text to AR. AR then decrypts the cipher text with her credentials

obtained from the login and role assignment process. If AR holds private key of the role, he

decrypts the cipher text. Detail steps of the protocol is as follows:

1. AR sends access request to SP. AR notifies SP if it’s a role privacy preserving request or a

normal request.

2. If it’s a role privacy preserving request, SP checks his policies and search roles for the

message. SP then creates a random number S, encrypt S and the message with the roles as public

key.

3. SP sends the encrypted message and random number S and the number S to AR.

International Journal of Network Security & Its Applications (IJNSA), Vol.6, No.3, May 2014

10

4. AR decrypts EK(S) by her role credentials as private keys. If there exits one role credential

Ki such that DRi
-1

(EK (S)) = S, then the role credential of Ri is the requested role and AR can

decrypt EK by Ri.

With the support of the protocol, SP knows nothing about AR’s role. However, SP ensures that

the AR can access the information if the AR holds required roles. Both AR’s role privacy and

SP’s information security are protected.

B. Privacy Protection Protocol for Service Access Request

If AR requires to access a service such as a website, the situation will be difference. In this case,

AR is requesting access to some resource of SP rather than some detailed data or text file which

could be transferred.

Figure 6 illustrates the role privacy preserving protocol for service access request. The protocol

is based on IBE technology as well. SP created a random number and encrypts the number with

role’s title as public key, and sends the encrypted result to AR. AR decrypts the cipher text with

her credentials, which are obtained from the login and role assignment process. AR gets a set of

decrypted number {S1, S2, … Sn}. If AR holds private key of the role, he could get S though he

does not know S and does not know if S is in her value set. The detail steps of the protocol is

shown as below:

1. AR sends the access request to SP. AR notifies SP if it’s a role privacy preserving request

or a normal request.

2. If it’s a role privacy preserving request, SP checks his policies to search roles for the

message. SP then create a random number S, and encrypt the number using the roles as public

key.

3. SP sends the encrypted S and EK (S) to AR.

4. AR decrypts EK(S) by her role credentials as private keys: Si = DRi
-1

 (EK (S)) where Ri is

the role credential, and gets a set of decrypted value set {S1, S2, … Sn}.

5. He sends the value set to SP for further process.

6. After receives values set from AR, SP checks if there is a value S in the set. If yes, he

grants access to AR or he will deny AR's access request.

In this protocol, AR has no knowledge about SP’s policy. However, SP could know if AR’s

access permission is granted. That is, SP could know if AR has required role or not. This kind of

knowledge disclosure is not able to be prevented. The service is hosted by SP, and he has to grant

permission by herself and know if AR has permission to access. SP just knows that AR holds one

of required roles to access the service. He does not know which role AR has and also he has no

knowledge about other roles held by AR.

International Journal of Network Security & Its Applications (IJNSA), Vol.6, No.3, May 2014

11

Figure 6: Privacy Protection Protocol for Service Access Request

6. SECURITY ANALYSIS

In this section, we take a brief review on our proposed protocols and see if they meet the

following privacy protection targets:

1. AR’s attributes privacy protection – ZERO disclosure of AR’s attributes.

2. RA’s policies privacy protection – ZERO disclosure of RA’s policies.

3. All other privacy information protection – such as RA’s role’s credentials and AR’s roles

information.

A. Security Analysis for Login and Role Assignment Process

In login & role assignment process, RA encrypts values by attributes as public key using IBE.

There is no non-neglectful possibility for AR to decrypt these values without credentials as

private key. Otherwise, IBE will be unsustainable. AR cannot know these values if he does not

hold valid credentials. In these two protocols, encrypted values are passed from RA to AR. RA

receives nothing about AR’s credential and as a result, RA has ZERO knowledge about AR’s

credentials and attributes. Since attributes in RA’s policies are represented by random values in

arbitrary order, AR is not possible to infer which value represents which attribute during AR’s

process of decrypting arbitrary ordered encrypted random values. In the first protocol, AR knows

the number of credentials he has. If it is a privacy concern, we may choose the second protocol

which is complete ZERO knowledge disclosure protocol.

In the policy mapping stage, we have two solutions. Since the first solution is not privacy-

preserving, our analysis is thus focusing on the second solution. Since there is no direct

information exchange between AR & RA in solution two, ZERO privacy disclosure are

supported for both AR & RA. PV receives policies, values and encrypted role credentials from

International Journal of Network Security & Its Applications (IJNSA), Vol.6, No.3, May 2014

12

RA. PV cannot decrypt role credentials without the shared key between AR and RA. Policy

values are also meaningless to PV. Thus, PV has ZERO knowledge of RA’s policy and role

credentials. During the login and role assignment stage, AR sends PV a bunch of values, which

are meaningless to PV. PV has ZERO knowledge about AR’s attributes. After policy match, PV

sends matched encrypted role credentials to AR. PV does not know the roles that AR gets.

B Security Analysis for Access Request & Response Protocols

Regarding to AR’s role privacy, AR can set his role to be privacy protected. The proposed

protocols will be employed if the AR chooses “Privacy Mode” or SOA will be executed with its

traditional access process.

In the scenario of information access request, SP encrypts information with the requested role as

public key and send the encrypted result to AR. SP has ZERO knowledge of AR’s role because,

if information is encrypted using IBE technology [9][10][20][21][22] by role’s title as public key,

only those who holds valid role credential as private key can decrypt it.

In the scenario of service access request, SP has to get involved to decide if permit should be

granted to AR. As a result, SP knows if AR’s request could be permitted. If the request is

permitted, SP knows that AR holds at least one requested roles. This knowledge disclosure is not

possible to avoid.

Regarding to SP’s policy privacy issue, in the scenario of information access request, SP encrypts

information by the requested role and sends the encrypted value to AR. AR decrypts the value by

her role credentials. If AR is able to decrypt the random number and information with a role, he

know this role is needed by the policy. This is still acceptable because we assume that SP’s

permission-to-role policies are not privacy sensitive. AR receives decrypted random number S,

and decrypts it by all his role credentials and get a value set {S1, S2,…Sn}. Since AR does not get

involved in any polices related operations, he knows nothing about SP’s polices.

In conclusion, we provide privacy protection option for AR, which protect AR’s role privacy and

SP’s polices. Considering the factors such as system efficiency, compatibility etc., privacy

protection in this process is not required to be “ZERO” knowledge disclosure. However, our

protocols already make a great improvement comparing with the traditional RB_XACML

standards.

7. IMPLEMENTATION OF OUR PROTOCOLS IN ACCESS REQUEST &

RESPONSE
A. Implementation of Information Access Request Protocol

AR has the option to set her request as a normal request mode or privacy protection mode. If AR

uses role privacy protection mode, its implementation is still compatible with SOA standards. We

will show a sample RBAC policy and explain the implementation of those two options.

The sample RBAC policy we are using are as follows:

• AR holds a role of senior developer.

• AR's requested access is to access a document of “develper-guide.doc” .

• AR's requested action for the resource is “read”.

International Journal of Network Security & Its Applications (IJNSA), Vol.6, No.3, May 2014

13

Figure 7: XACML Request in Tradition Way

Figure 8: XACML Request under Privacy Mode

Figure 7 and 8 show the implementation of the policy with the traditional SOA access request

and the privacy protection mode. Suppose SP receives the request from AR, if the request is

“Privacy Mode”, SP checks his policy set and find out which roles are eligible to read the

information. In the privacy protection mode, role information is hidden. SP only knows the

requested “resource” title. Thus, we need to create a set of resource PolicySets, which is in a

similar format of Role PolicySets. In Figure 9 and 10, SP gets to know that role of “Senior

Developer” will be granted read permission. The SP then encrypts the developer-guide.doc by the

“Senior Developer” as public key. He also creates a random number N, and encrypts N by the

“Senior Developer” as public key. SP then sends encrypted information and value N to AR. All

values are transferred via SOAP, which is a file/data transfer standard for SOA and web service.

Figure 11 is a sample of SOAP code used to transfer encrypted information, encrypted random

number N and original random number N.

<Request>

<Subject>

<Attribute AttributeId="urn:oasis:names:tc:xacml:1.0:subject:subject-id"

DataType="urn:oasis:names:tc:xacml:1.0:data-type:rfc822Name">

<AttributeValue>sample@users.example.com</AttributeValue> </Attribute>

<Attribute AttributeId="role" DataType="http://www.w3.org/2001/XMLSchema#string"

Issuer="admin@users.example.com">

<AttributeValue>Senior Developer</AttributeValue></Attribute>

</Subject>

<Resource>

<Attribute AttributeId="urn:oasis:names:tc:xacml:1.0:resource:resource-id"

DataType="http://www.w3.org/2001/XMLSchema#anyURI">

<AttributeValue>developer-guide.doc</AttributeValue></Attribute>

</Resource>

<Action>

<Attribute AttributeId="urn:oasis:names:tc:xacml:1.0:action:action-id"

DataType="http://www.w3.org/2001/XMLSchema#string">

<AttributeValue>read</AttributeValue></Attribute>

</Action>

</Request>

<Request>

<Subject>

<Attribute AttributeId="urn:oasis:names:tc:xacml:1.0:subject:subject-id"

DataType="urn:oasis:names:tc:xacml:1.0:data-type:rfc822Name">

<AttributeValue>sample@users.example.com</AttributeValue> </Attribute>

<Attribute AttributeId="role" DataType="http://www.w3.org/2001/XMLSchema#string"

Issuer="admin@users.example.com">

<AttributeValue>Privacy Mode</AttributeValue></Attribute>

</Subject>

<Resource>

<Attribute AttributeId="urn:oasis:names:tc:xacml:1.0:resource:resource-id"

DataType="http://www.w3.org/2001/XMLSchema#anyURI">

<AttributeValue>developer-guide.doc</AttributeValue></Attribute>

</Resource>

<Action>

<Attribute AttributeId="urn:oasis:names:tc:xacml:1.0:action:action-id"

DataType="http://www.w3.org/2001/XMLSchema#string">

<AttributeValue>read</AttributeValue></Attribute>

</Action>

</Request>

International Journal of Network Security & Its Applications (IJNSA), Vol.6, No.3, May 2014

14

Figure 9: Resource PolicySet for developer

After AR receives the encrypted message, he decrypt “EncryptedNumber” by one of his role

credentials. If the decrypted value matches “ChallengeNumber”, then use the credential to

decrypt “EncryptedInformation” and get the information he needs. If it fails, he tries other role

credentials. If AR does not own the required role credential, he will know nothing about the

information.

Our protocol introduce new functions and algorithms to traditional SOA such as: the options for

AR to setup “Privacy mode” and a bunch of resource PolicySet and permission PolicySet for

resource are created. These functions are easy to be implemented by logic or programming point

of view. Most important, the solution is still within SOA and web service basic standards and

protocols such as XACML and SOAP.

 Figure 10: Permission PolicySet for developer

<PolicySet PolicySetId="Permission PolicySet for developer-guide.doc"

 CombiningAlgorithm="permit-overrides">

 <Target>

 <Policy PolicyId="Permissions specifically for developer-duide.doc" CombiningAlgorithm="permit-

overrides">

 <Target>

 <Subjects><AnySubject/></Subject>

 <Resources><AnyResource/></Resources>

 <Actions><AnyAction/></Actions>

 </Target>

 <Rule RuleId="Permission to Senior Developer" Effect="Permit">

 <Target>

 <Subjects>

 <AnySubject/>

 </Subjects>

 <Actions>

 <Action>

 <ActionMatch MatchId="string-match">

 <AttributeValue>Read</AttributeValue>

 <ActionAttributeDesignator AttributeId="action-id"/>

 </ActionMatch>

 </Action>

 </Actions>

 </Target>

 </Rule>

 </Policy>

 </PolicySet>

<PolicySet PolicySetId="Resource PolicySet for develper-guide.doc"

 CombiningAlgorithm="permit-overrides">

 <Target>

 <Resources>

 <Resource>

 <ResourceMatch MatchId="string-match">

 <AttributeValue> develper-guide.doc</AttributeValue>

 <SubjectAttributeDesignator AttributeId="Role"/>

 </ResourceMatch>

 </Resource>

 </Resources>

 <Subjects>

 <AnySubject/>

 </Subjects>

 <Actions>

 <AnyAction/>

 </Actions>

 </Target>

 <PolicySetIdReference>Permission PolicySet for develper-guide.doc </PolicySetIdReference>

</PolicySet>

International Journal of Network Security & Its Applications (IJNSA), Vol.6, No.3, May 2014

15

Figure 11: Encrypted SOAP Message in Information Access Request

B. Implementation of Service Access Request Protocol

Implementation of service access request protocol is similar to that of information access request

protocol. Especially the parts of access request, resource PolicySet, and permission PolicySet.

Following the steps of the protocol, AR choose “Privacy Mode” and send SP the request, the

request code is the same as what we used in the implementation of information access request.

SP then checks resource PolicySet and permission PolicySet and creates a random value S. If the

matched role is “Senior Developer”, SP will encrypt S using “Senior Developer” as the public

key. SP sends the encrypted S to AR via SOAP (See Figure 12). AR decrypts the encrypted S by

all role credentials he holds. This process is handled at AR as an individual system or client, and

it’s not related with SOA. AR then sends the value set {S1, S2, … Sn} he gets to SP via SOAP

(See Figure 13). AR reviews the received set {S1, S2, … Sn} and compare with the original

number S to decide if granting or denying the AR's access.

Figure 12: Transfer Encrypted S with SOAP Message

<?xml version="1.0" encoding="utf-8"?>

<soap:Envelope

 xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/";

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance";

 xmlns:xsd="http://www.w3.org/2001/XMLSchema";>

 <soap:Body>

 <GetInformationResponse xmlns="http://www.xmlforasp.net";>

 <GetInformationResult>

<!-- Encrypted document of developer-guide.doc -->

 <EncryptedInformation>

 grIKlJMCSYHrgXlRThnxEYqZicqWeio0OJ3

 p+8NzFuqxzA8Yl55qaN/iy1Ywmm86fwqFmP

 8HL4/8lRA9dIfMySAkB5MF1KyEv5ReConcE

 DLoyl4sXJiYgWPQceh4XF06r49PkQGk8mvb

 WIpRbiiTJ76Uk22gCjdiU5IcWHnzB3k=

</ EncryptedInformation >

<! -- Encrypted Challenge Number N -->

 <EncryptedNumber>

 wDz/BvGUlJwL6WXNsc2/FGXiG9tlW4818VP

 wzlOSetiCSSz7kw4jwp1QvDJhJ+tr78X1uT

 zPkOQUbrUjHjaVnEwyP/Ez/uqVX7WW5zmvA

 y3ZtPmkkzHIJnM8f+FyRMG6Fr6nzZ/ZDEw6

 s+Vai5LTTLs3JZ297i5XTMAsaITgc74=

 </ EncryptedNumber>

<! - Original Challenge Number -->

 <ChallengeNumber>

 1234567890

 </ChallengeNumber>

 </ GetInformationResult>

 </ GetInformationResponse>

 </soap:Body>

</soap:Envelope>

<?xml version="1.0" encoding="utf-8"?>

<soap:Envelope

 xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/";

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance";

 xmlns:xsd="http://www.w3.org/2001/XMLSchema";>

 <soap:Body>

 <GetInformationResponse xmlns="http://www.xmlforasp.net";>

 <GetInformationResult>

<! -- Encrypted Challenge Number S -->

 <EncryptedNumber>

 wDz/BvGUlJwL6WXNsc2/FGXiG9tlW4818VP

 wzlOSetiCSSz7kw4jwp1QvDJhJ+tr78X1uT

 zPkOQUbrUjHjaVnEwyP/Ez/uqVX7WW5zmvA

 y3ZtPmkkzHIJnM8f+FyRMG6Fr6nzZ/ZDEw6

 s+Vai5LTTLs3JZ297i5XTMAsaITgc74=

 </ EncryptedNumber>

 </ GetInformationResult>

 </ GetInformationResponse>

 </soap:Body>

</soap:Envelope>

International Journal of Network Security & Its Applications (IJNSA), Vol.6, No.3, May 2014

16

The response code is exactly the same as traditional XACML response language code. The

implementation of service access request can also take use of current XACML standards.

Figure 13: Transfer Encrypted {S1, S2, … Sn} with SOAP Message

8. CONCLUSION

In this paper, we provide privacy protection solutions for RBAC in SOA environment. We

propose a new SOA RBAC solution which is privacy preserving. The RBAC solution is

composed of two processes: login & role assignment and access request & response process.

Login & role assignment is privacy sensitive, and our protocol for this process is ZERO

knowledge disclosure which means both AR and RA knows nothing about the counterpart’s

privacy. Login & role assignment process can be divided into two stages: attributes values

exchanging and policy mapping. We proposed two protocols for each stage with different privacy

protection and complication level. Access request & response process is regarded as less privacy

sensitive and our solution is compatible with current SOA standards. In SOA, there are two kinds

of access requests: information access and service access. We provide AR option to setup privacy

mode and propose two protocols to handle privacy protection for these two types of access

requests. We made a thorough security analysis on SOA RBAC solution and provide a set of new

protocols, which make the whole process privacy friendly and are also beneficial for security

policy management and system maintenance.

REFERENCES

[1] “Reference Model for Service Oriented Architecture 1.0”, Committee specification 1, 2, August 2006.

[2] “SOA Security (red book)”, IBM.

[3] J. Fiere, “SOA Security”, Master Degree Thesis in Information Sciences, November 2007.

[4] N. A. Nordbotten, “XML and Web Services Security Standards”, IEEE Communications Surveys &

Tutorials, vol. 11. No. 3, 2009.

<?xml version="1.0" encoding="utf-8"?>

<soap:Envelope

 xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/";

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance";

 xmlns:xsd="http://www.w3.org/2001/XMLSchema";>

 <soap:Body>

 <GetInformationResponse xmlns="http://www.xmlforasp.net";>

 <GetInformationResult>

<! -- Decrypted Challenge Number S1 -->

 <DecryptedNumber1>

 32342

 </ DecryptedNumber1>

<! -- Decrypted Challenge Number S2 -->

 <DecryptedNumber2>

 42323

 </ DecryptedNumber2>

…

<! -- Decrypted Challenge Number Sn -->

 <DecryptedNumbern>

 23212

 </ DecryptedNumbern>

</ GetInformationResult>

 </ GetInformationResponse>

 </soap:Body>

</soap:Envelope>

International Journal of Network Security & Its Applications (IJNSA), Vol.6, No.3, May 2014

17

[5] “eXtensible Access Control Markup Language (XACML) Version 2.0, OASIS Standard, February 1,

2005.

[6] “An Introduction To Role-Based Access Control”, NIST/ITL Bulletin, December,1995.

http://csrc.nist.gov/groups/SNS/rbac/documents/design_implementation/Intro_role_based_access.htm.

[7] R. S. Sandhu, E. J. Coyne, H. L. Feinstein, C. E. Youman, “Role-Based Access Control Models”,

IEEE, 0018-9162/96, 1996.

[8] T. Yu, M.Winslett, K. E. Seamons, “Supporting structured credentials and sensitive policies through

interoperable strategies for automated trust negotiation”, ACM Trans. On Information and System

Security, 6(1):1-42, February 2003.

[9] N. Li, W. Du, D. Boneh, “Oblivious Signature-Based Envelope”, Distributed Computing, vol. 17,no.4,

pp.293-302, 2005.

[10] K. Frikken, M. Atallah, J. Li, “Attribute-Based Access Control with Hidden Policies and Hidden

Credentials”, IEEE Trans. On Computer, vol. 55, No. 10, October 2006.

[11] J. Li, N. Li, “OACerts: Oblivious Attribute Certificates”, IEEE Trans. On Dependable and Secure

Computing, vol. 3, no. 4, October-December 2006.

[12] D. Yao, R. Tamassia, “Compact and Anonymous Role-Based Authorization Chain”, ACM Trans. On

Information and System Security, vol. 12, no. 3, article 15, January 2009.

[13] Wikipedia, the free encyclopedia, http://en.wikipedia.org/wiki/

[14] A. Menezes, P. van Oorschot, S. Vanstone, “Handbook of Applied Cryptography”, CRC Press, 1996.

[15] B. Barak, “Oblivious Transfer (OT) and Private Information Retrieval (PIR)”, November 29, 2007.

[16] R. Shahinian, T. Hu, “Foundations of Cryptography”, March 16, 2005.

[17] W. Tzeng, “Efficient 1-Out-of-n Oblivious Transfer Schemes with Universally Usable Parameters”,

IEEE TRANSACTIONS. ON Computers, vol. 53, no. 2. February 2004.

[18] “Core and hierarchical role based access control (RBAC) profile of XACML v2.0, OASIS.

[19] D. Boneh, M. Franklin, “Identity-Based Encryption from the Weil Pairing”, SIAM J. of Computing,

vol. 32, No. 3, pp. 586-615, 2003.

[20] A. Shamir, “Identity-Based Cryptosystems and Signature Schemes”, Advances in Cryptology – Proc.

CRYPTO 1984, pp. 47-53, 1984.

[21] C. Cocks, “An Identity Based Encryption Scheme Based on Quadratic Residues”, Proc. Eighth IMA

International Conference Cryptography and Coding, pp. 360-363. December, 2001.

[22] M. Freeman, K. Nissim, B. Pinkas, “Efficient Private Matching and Set Intersection”, Advances in

Cryptology – Proc. EUROCRYPT 2004, pp. 1-19, May 2004.

